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Abstract

Abrahão, Luca; Guerreiro, Thiago (Advisor). Quantum Features
of Harmonic Oscillators: investigating the limits of Quan-
tum Mechanics. Rio de Janeiro, 2024. 113p. Dissertação de
Mestrado – Departamento de Física, Pontifícia Universidade Católica
do Rio de Janeiro.

Quantum Mechanics is one of the most successful theories of all time. It
not only has a great predictive power, but also has completely changed the
way physics is understood. However, Quantum Mechanics does not predict its
own range of validity, and, in principle, the probabilistic description should
be valid in our macroscopic world. But it does not happen. In the core of the
explanation of why the description from Quantum Mechanics is substituted
by Classical Mechanics lies decoherence. The interaction of the many unseen
degrees of freedom from a macroscopic environment with a quantum system
makes it extremely hard to measure its quantum properties. In this context,
we explore how one can still detect non-classicality of oscillators in a
intermediate regime, whether in a mesoscopic scale or a oscillator with
a macroscopic number of excitations, via an optomechanical description. In
this work, we present the basics of the formalism of optomechanics, both
in the unitary dynamics and in an open quantum system approach. We
then discuss two different optomechanical systems, highlighting how we can
perceive its quantum features. At last, we discuss other possible schemes to
identify the quantum nature of harmonic oscillators in situations of increasing
macroscopic nature.

Keywords
Quantum Features; Decoherence; Macroscopic Oscillators; Non-

Classicality; Quantum Harmonic Oscillators.



Resumo

Abrahão, Luca; Guerreiro, Thiago. Aspectos Quânticos de Osci-
ladores Harmônicos: investigando os limites da Mecânica
Quântica. Rio de Janeiro, 2024. 113p. Dissertação de Mestrado –
Departamento de Física, Pontifícia Universidade Católica do Rio de
Janeiro.

A Mecânica Quântica é uma das teorias mais bem sucedidas de todos
os tempos. Não apenas tem um grande poder preditivo, como também
mudou completamente a maneira como entendemos a física. No entanto, a
Mecânica Quântica não prevê o próprio alcance, e, em princípio, a descrição
probabilística deveria ser válida em nosso mundo macroscópico. Mas isso não
acontece. Um ponto central do porquê a descrição quântica é substituída
pela Mecânica Clássica, é a descoerência. A interação dos muitos graus de
liberdade de um ambiente macroscópico faz com que seja extremamente
difícil medirmos as propriadades quânticas de um sistema. Nesse contexto,
exploramos como ainda podemos detectar efeitos não-clássicos de osciladores
harmônicos em um regime intermediário, através da optomecânica. Neste
trabalho apresentamos fundamentos do formalismo da optomecânica, tanto
a dinâmica unitária, quanto para sistemas quânticos abertos. Depois,
discutimos dois sistemas optomecânicos distintos, ressaltando como podemos
investigar a presença de características quânticas. Além disso, discutiremos
outras abordagens para identifcar características quânticas de osciladores
harmônicos em situações cada vez mais próximas ao regime macroscópico.

Palavras-chave
Características Quânticas; Descoerência; Osciladores Macroscópicos;

Não-Classicalidade; Oscilador Harmônico Quântico.
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Poets say science takes away from the beauty
of the stars — mere globs of gas atoms. I too

can see the stars on a desert night, and feel
them. But do I see less or more? The vastness

of the heavens stretches my imagination —
stuck on this carousel my little eye can catch
one-million-year-old light. A vast pattern —

of which I am a part. . . . What is the pattern,
or the meaning, or the why? It does not do

harm to the mystery to know a little about it.
For far more marvelous is the truth than any

artists of the past imagined it. Why do the
poets of the present not speak of it? What men
are poets who can speak of Jupiter if he were a
man, but if he is an immense spinning sphere

of methane and ammonia must be silent?

Richard P. Feynman, Footnote in "Lectures on Physics".



1
Introduction

Quantum Mechanics (QM) is one of the greatest theories ever developed.
From the beginning its predictive power was impressive. Considered by many
as the birth of the Quantum theory, in 1900, Max Planck’s idea of quantizing
the radiation emitted by a black body [4], was the very first of many rightful
predictions. What seemed, at first, only a mathematical tool, turned out to be
a complete revolution in our understanding of nature.

In the early years of the twentieth century, QM was centered in most
of the discussions within the physical world. Presented in different, and in
principle unconnected, formulations, such as the wave-like mechanics from
Schröedinger [5] and Heisenberg’s matrix theory [6], getting to a consent
was far way from happening. Even among the "founding fathers" there were
disbelievers. Einstein’s work on the photoelectric effect [7], which awarded him
as the Nobel laureate in 1921, is one of the stepping stones of QM. Nevertheless,
years later he was known as one of the most diligent against the Quantum
theory, as exemplified by his famous work together with Podolski and Rosen,
the EPR Paradox [8]. This lack of consent on the foundations of QM persists
until today and aspects such the collapse of the wave function are still a subject
of discussion, for example, in Zeilinger’s review [9].

On the practical side, however, the work developed in the mid and late
years of the twentieth century buried any possible doubts. In a fundamental
perspective, the development of Quantum Electrodynamics (QED) [10] from
Feynman, Schwinger, Tomonaga and Dyson (the first three awardad as Nobel
laureates in 1965), brought a precision degree that was unmatched at the time.
Even now, the precision is astonishing: the prediction of the theory matches
the measured value up to 10−12 [11]. The success of QED motivated the study
of more general theories with gauge symmetries. The quantization of the so
called Yang-Mills theory [12] ultimately resulted in the Standard Model of
Particles (SM), the model of all the fundamental interactions (except gravity)
in a weak energy regime [13]. Moreover, the success of gauge theories reshaped
the paradigm of fundamental physics.

Furthermore, in a applied context, the invention of the LASER and
advances in Quantum Optics enabled a huge amount of practical tests of QM.
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For instance, the work of Clauser [14] showed the inherent need of a quantized
theory of the electric field. Also, intrinsic quantum effects, such as squeezing
of light, are used in extremely precise experiments. For example, in the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [15].

Despite all of its successes and impact, there are two issues in the Quantum
Theory that remain unresolved: The first regards whether we need for a
quantized theory of gravity and, if so, what is this theory; the second regards
the limits of QM and how we transition from quantum to classical. As we will
see, these seemingly unrelated questions are getting closer and closer.

The discussion of a quantized theory of gravity [16] arose soon after
Einstein’s theory of General Relativity (GR) was published. The positive
history of QFT and the SM earned the formalism of gauge theories a spot as
the natural approach to a fundamental theory of Quantum Gravity (QG) This
approach, however, could not describe gravity at a fundamental level, due to
the non-renormalisability of the theory (an introductory explanation can be
found in [17], as well as in textbooks such [18,19]). Many other theories such
as String Theory [20] and Loop Quantum Gravity [21], to name a few, were
developed pursuing a way to put together QM and GR. Even though containing
a rich mathematical structure, many of the unifying models lack predictions
that are experimentally feasible to test within the near future, thus leaving
the problem open. In addition, even the existence of a fundamental quantum
theory of gravity is not a consent. Dyson, for instance, argues that detecting
a single graviton is, in principle, impossible [22]; Penrose on the other hand,
argues that gravitation is intrinsically classical and "induces classicality" into,
a priori, quantum systems [23].

As in any physical theory, we need experimental data to resolve the debate.
The detection of Gravitational Waves (GW) [24] opened another window to
gravitational phenomena and many proposals of detecting quantum effects
appeared, such as in [25,26]. On top of that, many tabletop experiments looking
for quantum effects of gravity have been proposed (for a general view, look
[27] and references therein). The most famous tabletop approach is due a
thought experiment proposed by Feynman [28], which basically consists of a
gravitational double-slit experiment: if we were able to put a test mass with
net spin 1/2 in a state with superposition on the location of the center of
mass, via a Stern-Gerlach magnet, and then interact with a source mass, we
would see that the interaction would lead to entanglement of the test and the
source masses [29]. If the interaction between the particles was only via the
gravitational field and assuming that no entanglement can be created from
local operators and classical communication [30], this ensures the quantum
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nature of the gravitational field.
In the example above, and in most proposals of tabletop QG, we must be

able to engineer a system that is simultaneously described by QM and with
a appreciable gravitational field. This is a remarkably difficult experimental
achievement mostly to the aforementioned issue of precisely stating the limits of
when a quantum description of the system remains valid, instead of a classical
one. In principle, the laws of QM impose no bounds in the size of the system
under study, and many experiments of matter-wave interference of increasing
number of atoms have been made, either with Bose-Einstein Condensates (BEC)
[31] or with molecules [32, 33]. However, these systems are still too light to to
present any appreciable gravitational interaction and the bigger the system of
interest gets, the higher the coupling with the environment, leading to one of
the main forms of imposing classicality: Decoherence.

To better understand the mechanism of decoherence, it is fundamental to
state that no quantum system is absolutely closed. For instance, in order to
get information about a system we need to make measurements, which are by
principle an interaction with an external system (the detector). The idea of
decoherence is that, despite every superposition of states being equally valid
(whilst dealing with unitary closed systems), not of all these superpositions
behave the same under the influence of a external environment. This leads to the
einselection of the states that we observe and describe via the classical formalism
[34]. In this way, as the number of degrees of freedom of the quantum system of
interest increases, the channels for decoherence also increase. Since interactions
with the environment are the main cause of the decoherence, in order to
maintain the properties of the quantum state we need an extremely isolated
system. A good candidate for the task are optically levitated nanoparticles
[35,36].

The technique of trapping particles using highly focused lasers is not
new [37]. Since Arthur Ashkin’s seminal work, in 1970, the improvements in
optical tweezers technology has skyrocketed. In the next years, he and his
collaborators developed many experiments ranging from trapping atoms [38]
to living organisms, as cells and bacteria [39]. In the midst of it, working with
Steven Chu and others, they achieved the trapping of a silica particle in water
[40]. These experiments were the beginning of the study of optical tweezers
to trap dieletric nanoparticles. The work of Ashkin awarded him as a Nobel
laureate in 2018, and the use of optical tweezers as a tool for studying physical
phenomena is only increasing.

In the 2010’s the study trapped nanoparticles in vacuum was propelled by
works that emphasized the possibility of unmatched isolation and control of the
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levitated particles [41,42]. Combining features of quantum optics [43], control
theory [44] and stochastic thermodynamics [45], the study of these systems,
often called levitodynamics, has become a important tool to study fundamental
physics. In the goal of demonstrating quantum features of mesoscopic objects,
levitated optomechanics has achieved stunning results, such driving the particles
to its center of mass motion ground state [46,47]. However, this is the step 0
of actually demonstrating the quantum behavior of these systems and much
needs to be done, both increasing our theoretical knowledge and experimental
capacities.

Within this picture, this work intends to provide a introduction to the
formalism and the physics underlying both the study of levitated optomechanical
systems as well as a way to characterize possible quantum behavior from
gravitational waves. The common ground of these two seemingly uncorrelated
phenomena is a old companion of all physics students: the Harmonic Oscillator
(HO).

We begin in chapter 2 reviewing the formalism that we’ll need to approach
the next parts of the texts. The idea of this is not to provide a complete
description of the formalism, rather it is to be taken as a collection of the
principles. This chapter ranges from many applications of the formalism of
Harmonic Oscillators, starting from the basic features, passing by open quantum
system dynamics and QFT, in a direct and straightforward way.

In chapter 3 we apply the formalism to understand the dynamics of a
Gravitational Wave interacting with a detector and how to detect quantum
effects. As we will see, this does not mean that we will be able to detect
a graviton, instead we focus in a description that encompass a macroscopic
number of gravitons populating the GW.

In chapter 4 we turn ourselves to the open dynamics of optomechanical
systems, regarding fluctuation and dissipation. We analyze the interaction of
a few cases of interest, focusing in how the quantum state of a mesoscopic
oscillator (either the mechanical nano particle, or a lightfield popullated by a
high number of photons) could, in principle, alter the dynamics of the system.

Finally, we end up in chapter 5, concluding the work and setting up the
discussion to what comes next.



2
Fundamentals of Quantum Harmonic Oscillators

The study of Quantum Harmonic Oscillators (QHO) is an essential
step towards comprehending theoretical physics. Due to it’s wide range of
applications, from Condensed Matter physics to Quantum Field theory, many
problems are accurately described by this formalism.

In this chapter, we will briefly review some of the concepts that will be
useful throughout this work as well as define the notations that will be used in
the following chapters.

We start from the basics, defining the bosonic operators and its commu-
tation relationship and the proceed to study some important states: Coherent,
Squeezed and Thermal. Afterwards, we describe the system of QHO subjected
to damping through the input-output formalism [48]. Diving deeper in the
discussion of open quantum systems, we follow the seminal work of Caldeira
and Legget [49], and introduce the path integral approach for dealing with
quantum systems with dissipation[50]. We then establish a connection with
Quantum Field theory, enabling us to discuss a effective theory of Gravitational
Waves via the Einstein-Hillbert action and connecting it to optomechanics [51].

2.1
Basic Concepts

In this section we rapidly cover the basics of QHO. A more comprehensible
and complete discussion can be found in most introductory textbooks in
quantum mechanics (for example, [52]). In what follows, we will consider only
single mode oscillators, unless otherwise stated.

The Hamiltonian of a Quantum Harmonic oscillator with mass m and
frequency ω is written as

Ĥ = mω2x̂2

2 + p̂2

2m, (2-1)

where x̂ and p̂ are the position and momentum operators, respectively.
We define the bosonic creation and annihilation operators a and a†,

respectively, which satisfy

[a, a†] = 1. (2-2)
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Acting on a excited state |n⟩, we have

a |n⟩ =
√
n |n− 1⟩ , a† |n⟩ =

√
n+ 1 |n+ 1⟩ (2-3)

justifying the names "creation" and "annihilation" operators. Furthermore, we
see that

a†a |n⟩ = n |n⟩ (2-4)

so that we define the number operator a†a ≡ n̂.
The relation of these bosonic operators with the position and momentum

operators is expressed as

x̂ = xzpm(a+ a†)

p̂ = ipzpm(a† − a) (2-5)

where xzpm and pzpm are, respectively, the zero point fluctuation of the position
and momentum given by

xzpm =
√

ℏ
2mω

pzpm =
√
mωℏ

2 . (2-6)

Its also worth defining the dimensionless quadratures, X and P , which are the
position and momentum operators in units of zero point fluctuations.

In this way, the Hamiltonian, written in terms of creation and annihilation
operators is simply

Ĥ =
(
n̂+ 1

21
)
ℏω (2-7)

and we can evaluate the energy levels of the oscillator Ĥ |n⟩ = En |n⟩ where

En = ℏω
(
n+ 1

2

)
. (2-8)

The equation above highlights the main feature of QHO: the energy levels are
equally spaced and there is a minimum possible energy, known as the ground
state.

So far, we have described our system in the Fock state basis, which rely
in the number of excitations of the oscillator. We now introduce other 3 states
that will be useful in what is to come.
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2.1.1
Thermal States

As the excitations (phonons, in case of a mechanical oscillator and photons
in case of a light field) in QHO are bosonic degrees of freedom, if a oscillator is
in equilibrium with its environment in a finite temperature T , the occupancy
number will follow the Bose-Einstein distribution, given by

p(n) = exp
(

−nℏω
kBT

)[
1 − exp

(
− ℏω
kBT

)]
(2-9)

where kB is the Boltzmann constant.
In this way, a thermal state ρth is a statistical mixture of Fock states in

different occupation numbers, wheighted by the Bose-Einstein distribution.

ρth =
∞∑
n=o

p(n) |n⟩ ⟨n| . (2-10)

We can show that the mean number of phonons ⟨n⟩ ≡ n̄ is

n̄ =
∞∑
n=o

np(n) =
[
exp

(
ℏω
kBT

)
− 1

]−1

. (2-11)

In the classical limit, where kBT >> ℏω, the mean occupation number is

n̄ ≈ kBT

ℏω
, (2-12)

precisely the thermal energy, kBT , divided by the energy of each phonon, ℏω.

2.1.2
Coherent States

Another set of important states are the coherent states [53]. These states
are the eigenstates of the annihilation and creation operators, that is

a |α⟩ = α |α⟩ . (2-13)

Coherents states are considered the closest quantum mechanical states to a
classical description. This arises from the fact that in the coherent state basis,
the uncertainty principle is satisfied with an equality, that is, the minimum
allowed value.

Unlike Fock states, Coherent states don’t have a definite number of
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excitations. We can see that by expressing a Coherent state in the number basis

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ , (2-14)

showing that the number of excitations in the coherent states follows a Poisson
distribution.

We can also describe Coherent states as generated by a unitary displace-
ment operator

D(α) = exp(αa† − α∗a), (2-15)

where α is a complex number.
From the Baker-Campbell-Hausdorff [54] theorem we see that

eA+B = eAeBe−[A,B]/2 (2-16)

if

[A, [A,B]] = [B, [A,B]] = 0

and in this way, we can rewrite the displacement operator as

D(α) = e− |α|2
2 eαa

†
e−αa. (2-17)

A coherent state |α⟩ is generated by the application of the displacement operator
in the vacuum state,

|α⟩ = D(α) |0⟩ (2-18)

There are many properties of the displacement operator that facilitates
calculations. We will not present them here, instead we will state them as
needed.

Its also worth noticing that the Coherent states form a overcomplete
basis, since

| ⟨α|β⟩ |2 = e−|α−β|2 (2-19)

and the completeness relation is given by

1
π

∫
|α⟩ ⟨α| d2α = 1, (2-20)
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where the integration is to be taken in the real and complex part of α.

2.1.3
Squeezed States

The last state that we will explicitly mention are the Squeezed states [55].
These states also satisfy the the uncertainty principle with equality and

therefore they are minimum-uncertainty states. However, a Squeezed state may
have less noise in one of the quadratures than the coherent state, at the expense
of increasing it in its conjugate quadrature. This property is very useful when
one needs to make extremely precise measurements, even enabling to surpass
the standard quantum limit [56].

We can generate Squeezed states by applying the unitary squeeze operator

S(ϵ) = exp
(1

2ϵ
∗a2 − 1

2ϵa
†2
)

(2-21)

where ϵ = re2iϕ, with r being the squeezing radius and ϕ is the squeezing phase.
It is worth noticing that we can create the so called squeezed-coherent

states, by first squeezing the vacuum and then applying the displacement
operator

|α, ϵ⟩ = D(α)S(ϵ) |0⟩ . (2-22)

We can better visualize the effect of the squeezing operator when looking
at the phase space representation, where a coherent state may be represented as
a "uncertainty circle". After applying the squeezing operator, the circle becomes
an ellipse squeezed in one direction, originating the name.

Some properties of the squeezing operator will be used to perform
calculations. As well as with the displacement operator, we will present them
as needed.

2.2
Optomechanical Hamiltonians

After a brief introduction of special states that we will encounter in the
future, we now proceed to describe two important optomechanical Hamiltonians:
the dispersive and the coherent scattering.

Consider an empty Fabry-Perot optical cavity consisting of two completely
reflecting mirrors(we will relax this condition in the next sections), one fixed
at one end and one movable at the other side. Given a cavity with L, the
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resonance frequency of the cavity is given by

ωc = π
c

L
n (2-23)

where c is the speed of light and n is an integer. The Hamiltonian of the system
is

H
ℏ

= ωca
†a+ ωmb

†b− ga†a(b+ b†) (2-24)

where a(a†) and b(b†) are bosonic annihilation(creation) operators of the light
field and the mechanical oscillator, respectively. The last term of (2-24) is the
interaction term, with coupling (g) given by

g = ωc
L

√
ℏ

2mωm
. (2-25)

This interaction term can be understood as follows: the light field inside
the cavity exerts a displacement in the movable mirror (recall that b + b† is
related to the position quadrature) proportional to the number of photons
inside (a†a). As the mirror moves, it induces a small shift in the length L,
resulting in a change in the energy of the photons inside. Furthermore, the
dispersive Hamiltonian can be achieved by properly positioning a nanoparticle
inside a cavity [57].

We see that this Hamiltonian is of third order in the bosonic operators,
giving rise to nonlinearities, as we will see below. Following [58] and [59], we
can write the unitary evolution operator generated by 2-24

U(t) = e−ib†bte−ira†aeka
†a(η(t)b−η∗(t)b†)e−i(a†a)2B(t) (2-26)

with the following definitions

k = g

ωm
,

r = ωc
ωm

,

η(t) = 1 − e−it,

B(t) = −k2(t− sin t) (2-27)

and we also used the scaled time ωmt → t.
This unitary operator contains an optically driven displacement term,

as well as a Kerr-like term [60], leading to an effective nonlinearity in the
dynamics.
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Empowered with the unitary evolution, we can evaluate the dynamics of
a state evolving via the dispersive Hamiltonian. We leave the application to
chapter 3, where we will explore its features in a situation of interest.

We now turn ourselves to the linear optomechanical interaction, sometimes
referred to as coherent scattering interaction. We will once again start from
the dispersive Hamiltonian in eq. 2-24, but to make it closer to situations of
interest, such as feedback cooling [46, 47], we will make some adjustments. The
Hamiltonian of interest, now reads

H
ℏ

= ∆̃a†a+ ωmb
†b− ga†a(b+ b†) + d(a† + a), (2-28)

where we consider a laser pumping the cavity, with frequency ω, generating a
detuning ∆̃ = ωc = ω and a drive term, d, which constantly pumps the cavity.
The detuning is related to the cooling or heating of the particle [61].

We then move to a reference frame that is centered around the mean
number of photons inside the cavity and the mean number of phonons in the
mechanical oscillator, displacing the Hamiltonian with the operators D(α) and
D(β). This is equivalent as transforming the bosonic operators as

a → a+ α

b → b+ β. (2-29)

By a suitable choice of displacements and disregarding terms higher than second
order in the operators, we can simplify the Hamiltonian to

H
ℏ

= ∆a†a+ ωmb
†b− gc(a† + a)(b+ b†). (2-30)

Despite seeming quite arbitrary, the freedom to choose the correct displacement
α and β are due experimental feasibility, such modulating the laser power or
changing the parameters of the cavity [62].

Within linearizing the Hamiltonian, we guarantee that we will be able
to solve the equations of motion in the input-output formalism (see below).
Despite losing some information regarding the nonlinearities of the dispersive
Hamiltonian, the linearized coupling, gc, is also stronger in many cases,
comparing to the dispersive coupling. So this approximation is a good one for
many of the applications of the area.
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2.3
Input-output approach

So far, we described the dynamics of an optomechanical system in the
unitary regime, where the system is completely closed. However, this is an
idealization which typically does not hold for two main reasons. The first is
straightforward: no system is perfectly closed. We have photons leaking from
the cavity and the mechanical oscillator suffers from dissipation coming from
the environment, to name a couple. The second reason, is fundamental: in order
to perform measurements on the system, we must interact. In this way, the
dynamics becomes intrinsically open and we also need a open quantum system
approach.

In this section, we will follow a seminar work from Gardiner and Collet
[48] and get to the Quantum Langevin Equations (QLE). Then we will show
the optomechanical equations of motion for a system of interest.

We start by considering a picture of a harmonic oscillator with cre-
ation(annihilation) operators a†(a), interacting with a bath of harmonic os-
cillators with creation(annihilation) operators b†(b). The total Hamiltonian
reads

Htot = Hsys +Hbath +Hint (2-31)

where

Hsys = ℏωaa†a

Hbath = ℏ
∫ ∞

−∞
dωb†(ω)b(ω),

Hint = iℏ
∫ ∞

−∞
dωκ(ω)

(
a†b(ω) − ab†(ω)

)
, (2-32)

with the usual bosonic commutation relations

[b(ω), b†(ω′)] = δ(ω − ω′). (2-33)

This is a rather idealised Hamiltonian, which we consider only linear interactions
between the system and the bath. We can understand the interaction term as
follows: a phonon of frequency ω is annihilated in the bath, creating a phonon
in the system. Similarly, the bath can also absorb a phonon from the system,
dissipating the energy.

We can now write can write the Heisenberg’s equation of motion for the
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operators a and b, leading to

ȧ(t) = −iωaa(t) +
∫ ∞

−∞
dωκ(ω)b(ω) (2-34)

ḃ(ω, t) = −iωb(ω, t) + κ(ω)a(t). (2-35)

Solving (2-35), we find

b(ω, t) = b0(ω)e−iω(t−t0) + κ(ω)
∫ t

t0
dt′e−iω(t−t′)a(t′) (2-36)

where we defined b(ω, t0) = b0(ω) and we consider t0 < t, so that the system is
at a initial state at t = t0. Inserting back on eq. 2-34,

ȧ(t) = −iωaa(t) +
∫ ∞

−∞
dωκ(ω)b0(ω)e−iω(t−t0)

+
∫ ∞

−∞
dω

∫ t

t0
dt′κ2(ω)e−iω(t−t′)a(t′) (2-37)

We now perform the first Markov approximation, which consists of
assuming a constant coupling between the bath and the system, κ(ω) =

√
γc

2π .
We have

ȧ(t) = −iωaa(t) +
√
γc
2π

∫ ∞

−∞
dωb0(ω)e−iω(t−t0)

+ γc
2π

∫ ∞

−∞
dω

∫ t

t0
dt′e−iω(t−t′)a(t′). (2-38)

Performing the integration in the last term, remembering that
∫ ∞

−∞
dωe−iω(t−t′) = 2πδ(t− t′) (2-39)

and
∫ t

t0
dt′f(t′)δ(t− t′) = 1

2f(t), (2-40)

we have

ȧ(t) = −iωaa(t) +
√
γc
2π

∫ ∞

−∞
dωb0(ω)e−iω(t−t0) + γc

2 a(t). (2-41)

Finally, we define the input field, which

bin(t) = 1√
2π

∫ ∞

−∞
dωb0(ω)e−iω(t−t0) (2-42)
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so that

ȧ(t) = −iωa(t) + γc
2 + √

γcbin(t). (2-43)

We could as well have solved (2-35) considering a future time t1 > t and
this would lead to

b(ω, t) = b1(ω)e−iω(t−t0) + κ(ω)
∫ t1

t
dt′e−iω(t−t′)a(t′) (2-44)

where b1 is b(ω, t1). In this way, we define the output field as

bout(t) = − 1√
2π

∫ ∞

−∞
dωb1(ω)e−iω(t−t1). (2-45)

This leads to a time reversed QLE, and we can also see that

bin(t) + bout(t) = √
γca(t). (2-46)

Physically, this can be thought of as a conservation law: the dynamics of the
system of interest is given by the difference of the input (what goes in) and
output (what comes out) fields, considering the dissipation of the process.

We also note that the dynamics of the system of interest depends only
on the initial condition of the bath, which can be interpreted as a external
force acting upon the system. Furthermore, dissipation appears naturally in
the QLE, due to the fact that we are unaware of the dynamics of the many
degrees of freedom of the bath, and when we trace them out, its influence on
the system of interest comes in the form of dissipation. More on this in the
next section.

Taking the conjugate of (2-43), we are able to write down the equations
of motion

Ẋ(t) = ωaP (t) − γc
2 X(t) + √

γcXin(t) (2-47)

Ṗ (t) = −ωaX(t) − γc
2 P (t) + √

γcPin(t) (2-48)

where X(t) and P (t) are the dimensionless position and momentum quadratures.
A good physical situation that fits perfectly the input-output formalism

is the one of a leaky cavity. We consider an optical cavity with one perfectly
reflecting mirror and one imperfect mirror. The damping is related to the
bandwith of the cavity: the broader the bandwith, higher the dissipation.

Following a analogous formalism, we can also write the QLE for a
mechanical oscillator interacting with a discrete bath of harmonic oscillators
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[63]. Despite being two different physical situations, the input-output formalism
is pretty much the same. We will derive this equation in another fashion within
the next section.

Now, we can look at the equations of motion of a more general system
than the one described in 2.2. The system consists of a one perfectly reflecting
movable mirror, in contact with a environment and one partially reflecting fixed
mirror. In this way, there is dissipation both due to the leaking of photons from
the cavity and also from the brownian motion from the mechanical mirror. The
equations of motion are

Ẋc(t) = ωaPc(t) − γc
2 Xc(t) + √

γcXin(t) + i

ℏ
[Hint, Xc(t)] (2-49)

Ṗc(t) = −ωaXc(t) − γc
2 Pc(t) + √

γcPin(t) + i

ℏ
[Hint, Pc(t)] (2-50)

Ẋm(t) = ωmPm(t) + i

ℏ
[Hint, Xm(t)] (2-51)

Ṗm(t) = −ωmXm(t) − γmPm(t) +
√

2γmf + i

ℏ
[Hint, Pm(t)] (2-52)

where we have the dimensionless quadratures

Xc(t) = a(t) + a†(t),

Xm(t) = b(t) + b†(t),

Xin(t) = cin(t) + c†
in (2-53)

and analogous for the dimensionless Pi(t) (i = c,m, in) quadratures. Also, γm
is the mechanical dissipation and f is the input function of the mechanical
bath.

We see that the major part of the challenges when solving this system of
equations comes from the coupling rising from the interaction Hamiltonian.

2.4
Influence Functional

In this section we will deal with the problem of a dissipative quantum
system via the Feynman-Vernon influence functional formalism [50]. In this
approach we will treat the quantum systems via Path Integrals [64] and we
will describe the interaction of a system interacting with a bath of harmonic
oscillators. We will follow the work of Caldeira and Legget [49], where this
formalism was used to derive features of classical Brownian motion from a
completely quantum perspective.
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The system is described by the total Hamiltonian

Htot = HB +HS +HInt (2-54)

where

HS = p2

2M + v(x)

HB =
∑
k

p2
k

2m +
∑
k

1
2mω

2
kR

2
k

HInt = x
∑
k

CkRk, (2-55)

and Rk, pk and ωk are, respectively, the position, the momentum and frequency
of the k-th oscillator of the bath. The interaction is assumed to be linear, and
the coupling is given by Ck.

The density matrix of the system evolves as

ρ(t) = U(t)ρ(0)U †(t) (2-56)

with the unitary evolution

U(t) = exp
(−iHtott

ℏ

)
. (2-57)

We now write the density matrix in the position basis, where bold symbols are
position vectors R = (R1, ..., Rk)

⟨x,R| ρ(t) |x′,R′⟩ =
∫
dx0dx

′
0dR0dR0

′ ⟨x,R|U(t) |x0,R0⟩

⟨x0,R0| ρ(0) |x′
0,R

′
0⟩ ⟨x′

0,R
′
0|U †(t) |y,Q⟩ (2-58)

from which we identify the propagators

K(x,R, t;x0,R0, 0) = ⟨x,R|U(t) |x0,R0⟩ (2-59)

and its conjugate. We can think of this integration as our ignorance of the
initial conditions of the system, so that we are summing over all the possible
initial states.

From the Path Integral formulation of Quantum Mechanics [64] we can
write the propagators as

K(x,R, t;x0,R0, 0) =
∫

DxDRexp
(
i

ℏ
Stot[x,R]

)
(2-60)

where the integration with respect to D is to be taken over all the trajectories
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from x(0),R(0) to x(t),R(t) and Stot[x,R] is the total action of the system,
given by

Stot =
∫ t

0
dt′Ltot(t′) (2-61)

Therefore the system plus bath is described by

⟨x,R| ρ(t) |x′,R′⟩ =
∫
dx′

0dx
′
0dR0dR0

′K(x,R, t;x0,R0, 0)

⟨x0,R0| ρ(0) |x′
0,R

′
0⟩K∗(x′,R′, t;x′

0,R
′
0, 0). (2-62)

However, given the many unobservable degrees of freedom of the bath,
we wish to write the evolution of our system alone. We do this by tracing out
the bath degrees of freedom. Thus we are interested in the dynamics of the
reduced density operator ρ̃(x, x′, t), given by

ρ̃(x, x′, t) =
∫
dR ⟨x,R| ρ(t) |x′,R⟩ =

∫
dx0dx

′
0dR0dR0

′dRK(x,R, t;x0,R0, 0)

⟨x0,R0| ρ(0) |x′
0,R

′
0⟩K∗(x′,R, t;x′

0,R
′
0, 0). (2-63)

Assuming the bath is in a separable state at t = 0, we have

ρ(0) = ρS(0)ρB(0) (2-64)

and the dynamics of the reduced density operator reads

ρ̃(x, x′, t) =
∫
dx0dx

′
0J (x, x′, t;x0, x

′
0, 0)ρS(x0, x

′
0, 0) (2-65)

where the superpropagator J (x, x′, t;x0, x
′
0, 0) is

J (x, x′, t;x0, x
′
0, 0) =

∫
DxDx′exp

(
i

ℏ
SS[x]

)
exp

(
− i

ℏ
SS[x′]

)
F [x, x′] (2-66)

and the Influence Functional, F [x, y], is

F [x, x′] =
∫
dRdR0dR

′
0ρB(R0,R

′
0, 0)∫

DRDR′ exp
{
i

ℏ
(SB[R] − SB[R′] + SInt[x,R] − SInt[x′,R′])

}
.

(2-67)

The mathematical properties of Influence functional can be found in [50].
We notice here that if there is no interaction among the system and the

bath, the Influence Functional reduces to the identity, and the evolution of the
system is given by a product of a forward time propagator and a time reversed
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propagator that are completely uncoupled. This is related to the fact that when
one deals with closed systems, the probabilities of transition are written in
terms of a modulus squared of wave functions. Furthermore, we see that the
Influence Functional couples the forward and backward time evolution, leading,
for example, to dissipation.

The actions of the the bath and the interaction between the bath and the
system are

SB[R, Ṙ] =
∫ t

0
dt′
∑
k

p2
k

2m −
∑
k

1
2mω

2
kR

2
k (2-68)

and

SInt[x,R] = −
∫ t

0
dt′x

∑
k

CkRk. (2-69)

Taking the bath at a initial state in equilibrium with a temperature T , is
density matrix reads

ρB(R0,R
′
0, 0) =

∏
k

ρ
(k)
B (R0k, R0

′
k, 0) (2-70)

where

ρkB(R0k, R0
′
k, 0) = mωk

2πℏ sinh(ℏωk/kBT ) exp
{

mωk

2πℏ sinh(ℏωk/kBT )

×
[
(R0

2
k +R0

′2
k ) cosh(ℏωk/kBT ) − 2R0kR0

′
k

]}
. (2-71)

After inserting the initial state of the bath in (2-67) we are able to analytically
solve the Influence Functional [65], due to the many considerations that were
made, such as the linearity of the interaction and the separability of the initial
state, for instance, we were able to.

In this way, the Influence Functional for the system reads

F [x, x′] = exp
{

− 1
ℏ

∫ tf

0

∫ t

0
dt dt′[x(t) − x′(t)][α(t− t′)x(t′) − α∗(t− t′)x′(t′)]

}
(2-72)

where

α(t− t′) =
∑
k

C2
k

2mωk

[
exp(−iωk(t− t′)) + exp(iωk(t− t′))

exp
(

ℏωk

kBT

)
− 1

+ exp(−iωk(t− t′))
exp

(
ℏωk

kBT

)
− 1

]
.

(2-73)
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Before substituting in eq. 2-65, we first split α(t − t′) in its real and
imaginary part, αfl and αdiss, respectively. We will later see that the real part
is associated with fluctuations and the imaginary to dissipation, reasoning the
names. Therefore, the propagator of eq 2-65 is

J (x, x′, t;x0, x
′
0, 0) =

∫
DxDx′exp

(
i

ℏ
(SS[x] − SS[x′])

)
× exp

{
− i

ℏ

∫ tf

0

∫ t

0
dtdt′ [x(t) − x′(t)]αdiss(t− t′) [(x(t) + x(t′)]

}
× exp

{
−1
ℏ

∫ tf

0

∫ t

0
dtdt′ [x(t) − x′(t)]αfl(t− t′) [(x(t′) − x(t′)]

}
(2-74)

where we have

αfl(t− t′) =
∑
k

C2
k

2mωk
coth

(
ℏωk
kBT

)
cosωk(t− t′) (2-75)

and

αdiss(t− t′) = −
∑
k

C2
k

2mωk
sinωk(t− t′). (2-76)

Now, we can perform the so-called Feynman-trick [65] in the propagator
in eq.2-74. This consists of writing the term containing the fluctuation as

exp
{

−1
2

∫ tf

0

∫ tf

0
dt dt′(x(t) − x′(t))αfl(t, t′)(x(t′) − x′(t′))

}
=∫

Dζ exp
{

−1
2

∫ tf

0

∫ tf

0
dt dt′ζ(t)α−1

fl (t, t′)ζ(t′) + i
∫ tf

0
dtζ(t)(x(t) − x′(t))

}
.

(2-77)

The Feynman trick basically decouples the forward and backward paths, at the
expense of introducing a random procces ζ with probability density functional
given by

P [ζ(t)] = exp
(

−1
2

∫ tf

0

∫ tf

0
dt dt′ζ(t)αfl(t, t′)ζ(t′)

)
. (2-78)

Furthermore, we notice that

⟨ζ(t)⟩ζ = 0, (2-79)

⟨ζ(t)ζ(t′)⟩ζ = ℏαfl(t− t′), (2-80)

with ⟨·⟩ζ denoting the stochastic average over the distribution P [ζ(t)].
The explicit form of the superpropagator reads
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J (x, x′, t;x0, x
′
0, 0) =

∫
DxDx′exp

(
i

ℏ
(SS[x] − SS[x′])

)
× exp

{
− i

ℏ

∫ tf

0

∫ t

0
dtdt′ [x(t) − x′(t)]αdiss(t− t′) [(x(t) + x(t′)]

}
×
∫

Dζ exp
{

−1
2

∫ tf

0

∫ tf

0
dt dt′ζ(t)α−1

fl (t, t′)ζ(t′) + i
∫ tf

0
dtζ(t)(x(t) − x′(t)

}
(2-81)

where in the first line we have the dynamics of system of interest, in the second
line we have the dissipative term and in the last line we have the stochastic
density kernel and the coupling of the stochastic variable with the forward and
backward paths.

Up until now, the description of the model has been completely quantum
mechanical. In order to get to the equation of classical brownian motion, we
need to make a semiclassical approximation. Instead of considering all possible
paths, as we do in the full quantum picture, we will extremize the exponentials
in (2-81). This is analogous as the classical formalism, but now we also have
the contributions of the interaction with the bath (read, the fluctuation and
dissipation terms), leading us to the Langevin equations. Considering that
there is no coupling between the forward and backward paths, and take the
ansatz x(t) = x′(t) [66, 67]. Therefore, the equation of motion derived from the
propagator is

mẍ(t) + v′(x) + fdiss(t) = ζ(t), (2-82)

where we have

fdiss(t) =
∫ t

0
dt′x(t′)αdiss(t− t′). (2-83)

We now want to see how this formalism relates to the classical equation
of motion that is normally used to described Brownian motion, that is

mẍ(t) + v′(x) + ηẋ(t) = F (t) (2-84)

where F (t) is a random force with

⟨F (t)⟩ = 0 (2-85)

⟨F (t)F (t′)⟩ = 2ηkBTδ(t− t′) (2-86)

where η is a dissipation constant. We can see that there is a great resemblance
between eq’s 2-84 and 2-82. In fact, for the appropriate regime, they are the
same. In order to achieve that, we will work with the expressions for αfl and
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αdiss, which as we will see, lead to the terms fdiss(t) and ζ(t) in the equation of
motion. Let’s begin by looking at the autocorrelator of the stochastic process,
ζ(t), 2-80, explicitly

⟨ζ(t)ζ(t′)⟩ζ = ℏ
∑
k

C2
k

2mωk
coth

(
ℏωk
kBT

)
cosωk(t− t′). (2-87)

Taking the high temperature regime, i.e., kBT ≫ ℏωk, we have

ℏαfl(t− t′) ≈ kBT

m

∑
k

C2
k

ω2
k

cosωk(t− t′) + O(ℏ2). (2-88)

Next, we consider the bath as a continuum of oscillators, with density, ρD(ω),
leading to

ℏαfl(t− t′) = kBT

m

∫ ∞

0
dωρD(ω)C

2(ω)
ω2 cosω(t− t′) (2-89)

and we choose
ρD(ω)C2(ω) =


2mηω2

π
, ω < Ω ,

0 , ω > Ω ,
(2-90)

introducing a high frequency cutoff. Solving the integral, we are left with

ℏαfl(t− t′) = 2ηkBT
1
π

sin Ω(t− t′)
(t− t′) (2-91)

which in the limit as Ω goes to infinity,

⟨ζ(t)ζ(t′)⟩ζ = ℏαfl(t− t′) = 2ηkBTδ(t− t′). (2-92)

This means that the stochastic term in eq. 2-82 satisfies the same autocorrelation
as the usual term in in the Classical Brownian motion, in the regime of high
temperatures and in the limit of large Ω. Physically, this means that we are
interested in the low frequency regime of the system. One way to understand
this is as follows: we do not resolve every single interaction of the environment
with the system (for example, every gas molecule hitting a mesoscopic particle),
instead we get an averaged out behavior, where many collisions happens in one
time interval Ω−1.

We now turn ourselves to the dissipative term, αdiss(t − t′). Since the
distribution of oscillators is already fixed from eq. 2-90, all we need to do is
insert it in eq. 2-76, leading to

αdiss(t− t′) = η

2π
d

d(t− t′)

∫ Ω

−Ω
dω cosω(t− t′) (2-93)
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which in the limit of Ω → ∞ gives

αdiss = ηδ′(t− t′) (2-94)

where the prime is a derivation with respect to t − t′. We can now insert it
back at eq. 2-76,

fdiss(t) = η
∫ t

0
dt′x(t′)δ′(t− t′). (2-95)

Using the properties of distributions in A, its easy to see that this integral
simply gives

fdiss(t) = ηẋ(t) (2-96)

precisely recovering the term proportional to the velocity in the equation of
Classical Brownian motion.

In this way, we showed how to derive the classical equation of Brownian
motion from a completely quantum formalism, with use of the Influence
Functional approach.

2.5
A digression: Quantum Field Theory

In the last section, we discussed a formalism for describing the effective
dynamics of a subsystem of interest, tracing out the unobservable part. We did
this via the Path Integral formalism which is also used in many formulations
of Quantum Field Theory [68]. In this section, we aim at pointing out some
similarities between what we have discussed so far and more standard quantum
field theory. To do so, we will focus on the dynamics of a scalar field, via
the Path Integral formalism and then establish a link with the dynamics of a
open system. Afterwards, we briefly describe the quantization method known
as second quantization, which highlights the importance of the formalism of
Harmonic Oscillator even in a more abstract and fundamental point of view.
Throughout this section, unless otherwise stated, we work in natural units,
where ℏ = c = 1.
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2.5.1
Path Integrals and Effective Interactions

We begin by stating the Path Integral for a scalar field in 3+1 dimensions,
where we will follow [18].

Z = ⟨0| e−iHt |0⟩ =
∫

Dϕei
∫
d4x( 1

2 (∂ϕ)2−V (ϕ)) (2-97)

where H is the Hamiltonian, the field ϕ(x) depends on the four-vector x = (t, x⃗)
and we use a mostly minus metric, as usual in QFT. This functional integral
gives us the transition amplitude of going from the ground state, to the ground
state, i.e., vacuum to vacuum. Despite many interesting phenonema regarding
the vacuum fluctuations present in QFT, we will not cover them in this brief
introduction.

A more interesting approach is to actively perturb the vacuum, including in
our description source and sink terms, responsible for creation and annihilation
of excitations in the field. The Path Integral of interest, than becomes

Z =
∫

Dϕei
∫
d4x( 1

2 (∂ϕ)2−V (ϕ)+J(x)ϕ(x)). (2-98)

We notice that the source term that appears in the action, contributes as a
force term in the equations of motion for ϕ.

This functional integral is extremely difficult to solve, except when we
have the so called free theory, for V (ϕ) = 1

2m
2ϕ2. In this way we end up with

the Klein-Gordon field equation, which is the massive scalar field, usually the
first example in any QFT course

Z =
∫

Dϕei
∫
d4x( 1

2 (∂ϕ)2− 1
2m

2ϕ2+J(x)ϕ(x)). (2-99)

By integrating by parts, we can write eq. 2-99 as

Z =
∫

Dϕei
∫
d4x(ϕ(∂2−m2)ϕ+J(x)ϕ(x)) (2-100)

where we can disregard the boundary terms, as we consider all the fields are
sufficiently well behaved and vanish at infinity.

The last step to finish the analogy will be to integrate eq. 2-100 over the
field, leading to [18]

Z(J) = Z0e
iW (J) (2-101)
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where Z0 = Z(J = 0) and

W (J) = −1
2

∫ ∫
d4xd4yJ(x)D(x− y)J(y) (2-102)

in which D(x− y) is called the propagator and is the solution of

−(∂2 +m2)D(x− y) = δ(4)(x− y). (2-103)

In our case, the propagator is of the form

D(x− y) =
∫ d4k

(2π)4)
eik(x−y)

k2 −m2 + iϵ
. (2-104)

Writting in terms of the Fourier transform, we are left with

W̃ (J) = −1
2

∫ d4k

(2π)4J
∗(k) 1

k2 −m2 + iϵ
J(k) (2-105)

and here we can explicitly see the resemblance with a effective system.
We see that we have a sum over all the modes of the scalar field, due

to the integration of d4k. This is actually the same of what happened in the
last section, when, in order to find the effect of the environment of the bath
in the system of interest (2-89), we summed over all the frequencies of the
bath’s oscillators. As before this induces a characteristic time in the dynamics
of the system, and performing this integration is equivalent to state that the
dynamics of the field ϕ is way faster than the rest of the system, leading to
very short-lived excitations. In field theory jargon, the virtual excitations of
the field lead to interaction among the currents J .

As an example, consider a current J = J1 + J2 where Ji = qiδ
(4)(x− xi).

Calculating

W (J1, J2) =
∫
dtE(J1, J2) (2-106)

where we neglect self interacting terms (which only would lead to additional
terms in the action) we end up with

E(J1, J2) = −q1q2

∫ d3k

(2π)3
eik⃗·(x⃗−y⃗)

k⃗2 +m2
= −q1q2

4πr e
−mr. (2-107)

In the limit of m → 0 we recover the Coulomb interaction, showing how to
achieve it from an effective interaction description.

It’s worth noticing that there are many subtleties when quantizing the
theory of electromagnetism, mainly to gauge issues. In this example, of the
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massive scalar field, things are simpler and we can understand the concept in a
qualitative way.

The connection with open quantum system dynamics is as follows. Picture
a system contained of two subsystems, say A and B, that individually interact
with the same environment. The total Hamiltonian of the system is analogous
as in the previous section,

Htot = HB +HS +HInt (2-108)

where now we have

HS = p2
x

2M + v(x) +
p2
y

2M + v(y)

HB =
∑
k

p2
k

2m +
∑
k

1
2mω

2
kR

2
k

HInt = (x+ y)
∑
k

CkRk, (2-109)

where x and y are the positions and px and py the momenta regarding the
subsystems A and B, respectively. Also, we assumed that the coupling is the
same for both systems, to simplify the calculations.

Since the interaction term is linear, it is not hard to show, following
exactly the same procedure as in sec 2.4, that the reduced evolution of the
system it’s given by

ρ̃(x, y, x′, y′, t) =
∫
dx0dx

′
0dy0dy

′
0J (x, y, x′, y′, t, ;x0, x

′
0, y0, y

′
0, 0)ρS(x0, x

′
0, y0, y

′
0, 0).

(2-110)

where the superpropagator J (x, y, x′, y′, t, ;x0, x
′
0, y0, y

′
0, 0) is

J (xi, x′
i, t;xi(0), x′

i(0), 0) =
∫

DxDx′exp
(
i

ℏ
SS[xi]

)
exp

(
− i

ℏ
SS[x′

i]
)

F [xi, x′
i].

(2-111)

In order to shorten the notation, we have written the dependence in x, y as
only xi, and there is a implicit summation. For example, exp

(
i
ℏSS[xi]

)
is to

be understood as exp
(
i
ℏ (SS[x]) + (SS[y])

)
. At last, the influence functional for

this system is

F [xi, x′
i] =

∫
dRdR0dR

′
0ρB(R0,R

′
0, 0)∫

DRDR′ exp
{
i

ℏ
(SB[R] − SB[R′] + SInt[xi,R] − SInt[x′

i,R
′])
}
.

(2-112)
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At this point, we will begin a more formal discussion. Formal, in this
context, is not related to the rigour of the formalism, but rather to the actual
form of the equations. Taking the real and imaginary parts of the influence
functional we showed that we can write the propagator in terms of two kernels,
one involving the fluctuations and the other involving the dissipation, namely

J (xi, x′
i, t;xi(0), x′

i(0), 0) =
∫

DQDQ′exp
(
i

ℏ
(SS[xi] − SS[x′

i])
)

× exp
{

− i

ℏ

∫ tf

0

∫ t

0
dtdt′ [Q(t) −Q′(t)] Adiss(t− t′) [(Q(t) +Q(t′)]

}
× exp

{
−1
ℏ

∫ tf

0

∫ t

0
dtdt′ [Q(t) −Q′(t)] Afl(t− t′) [(Q(t′) −Q(t′)]

}
(2-113)

where we have defined Q(t) = x(t) + y(t). Here we explicitly exchanged the
previous kernels αfl(t− t′) and αdiss(t− t′) to arbitrary kernels Afl(t− t′) and
Adiss(t− t′) where we assumed that the time dependence is of the form (t− t′).
Furthermore, we now that the kernels depends on a continuous distribution
of oscillators, analogous to eq.(2-89) and the definition of the density itself
depends on physical constraints of the problem (2-90).

We will now turn ourselves to the dissipation term and will argue that its
is precisely from there that we will achieve a effective interaction between the
two subsystems, mediated by the environment. When summing over all modes
dissipative term will be of the form

Φdiss =
∫ ∞

0

∫ tf

0

∫ t

0
dtdt′dωN (ω)Adiss(t− t′) [Q(t) −Q′(t)] [(Q(t) +Q(t′)]

.(2-114)

The argument is as follows: since we have some freedom to choose the density
of states, we could, in principle, end up with something proportional to

Φ ∝
∫ tf

0
dt[Q2(t) −Q′2(t′)]. (2-115)

As Q(t) = x(t) + y(t), the squared terms would lead to a interaction among the
systems, mediated by the environment. Hence, tracing out a subsystem could
in principle generate an effective interaction amongst the others.

We have work in progress regarding two particles in a cavity where we
wish to derive the effective interaction among them via the Feynman-Vernon
formalism, motivated by [69].
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2.5.2
Canonical Quantization

In this approach, we will see how starting from a classical field equation,
namely, once again, the Klein-Gordon field, we can get to a quantum theory.
We will assume some familiarity with introductory ideas of classical field theory
such as found in [70], for example.

Firstly, we start by the Klein-Gordon Lagrangian (to be precise, this is
actually a Lagrangian Density, but we will use it as a language abuse) for a
real scalar field, ϕ, that is

L = 1
2(∂ϕ)2 − 1

2m
2ϕ2. (2-116)

From the Euler-Lagrange equations, we see that the equations of motion for
the field reads (

∂2

∂t2
− ∇2 +m2

)
ϕ = 0. (2-117)

Lastly, we can write the Hamiltonian as

H =
∫
d3xH =

∫
d3x

(1
2π

2 + 1
2(∇ϕ)2 + 1

2m
2ϕ2

)
(2-118)

where π(x) is the canonical momentum density conjugate to the field ϕ(x) and
H is the Hamiltonian density.

Now, in the same way that is done when quantizing a system with particles,
instead of fields, we elevate the field and its canonical conjugate momenta to
operators, imposing the following commutation relations

[ϕ(x), π(x′)] = iδ(3)(x − x′) (2-119)

and

[ϕ(x), ϕ(x′)] = [π(x), π(x′)] = 0 (2-120)

where we now work in the Schrödinger picture, ϕ(x) and π(x) does not depend
on time. We will relax this condition in the next section, but this serve well for
our purposes in here.

We now expand the field into its Fourier transform giving

ϕ(x) =
∫ d3k

(2π)3 e
ix·kϕ(k) (2-121)
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so that the Klein-Gordon equation turns into(
∂2

∂t2
+ |k|2 +m2

)
ϕ = 0. (2-122)

Defining ω2
k = |k|2 +m2 we see that the Klein-Gordon field in momenta space

follows the same equation as the harmonic oscillator.
Thus, the way of solving is analogous. We will define creation and

annihilation operators, such as in section 2.1, but in this time they range
through all modes, i.e,

ϕ(x) =
∫ d3k

(2π)3

√
1

2ωk

(
ake

ix·k + a†
ke

−ix·k
)

(2-123)

π(x) =
∫ d3k

(2π)3

√
ωk
2
(
a†

ke
−ix·k − ake

ix·k
)
, (2-124)

where the commutation relation for each of the operators reads

[ak, ak′ ] = (2π)3δ(3)(k − k′). (2-125)

Thus, we can interpret the field as a collection of harmonic oscillators,
permeating the whole space.

In the next section, we will generalize this idea for a field with higher
degrees of freedom and with more subtleties. The ideas of the formalism,
however, remains the same.

2.6
From Graviton Physics to Optomechanics

We saw how Quantum Field theory deeply rely in harmonic oscillators
and now we take one step further: we aim to describe Quantum Gravity as
harmonic oscillators too! Well, not quite. What we will deal, in fact, is closer to
a rather new approach called graviton physics [71]. We will not be concerned
with fundamentals aspects of Quantum Gravity, for example, what happens
at the Planck scale. What we’ll do is to consider that gravitons are quantized
weak perturbations of spacetime, not its basic constituents. The analogy is
precisely what is done with phonons, in condensed matter: phonons are not
fundamental constituents of matter and, in fact, they don’t even exist in the
atomic scales.

Bearing this in mind, we will follow the discussion in [72] and establish the
connection between graviton physics and optomechanics. Later on in, chapter
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3, we will deepen the discussion analyzing the dynamics of such Hamiltonian.
We will be working within the framework of linearized gravity, employing

a flat metric background to enable us to consider weak gravity far from sources.
With this choice, the quadratic part of the Einstein-Hilbert action (in vacuum)
in the harmonic gauge ∂µhµν = 0 reduces to

SEH = c4

32πG

∫
d4x

(1
2∂µhαβ∂

µhαβ − 1
4∂µh∂

µh
)
, (2-126)

where, as usual, the field hµν represents the small perturbations of the otherwise
flat metric ηµν , and h = ηµνhµν is contracted by the flat metric tensor. We
neglect higher order terms (that is, gravitational self-interactions) throughout,
as their impact is negligible in GWs far from their source.

In the transverse traceless (TT) gauge, we expand the field into Fourier
components as

hTTij (t,x) =
∫ d3k√

(2π)3
ϵλij (k)hλ (t,k) eik·x , (2-127)

where the ϵλij (k) are the tensors for the two polarization states λ = +,×,
satisfying the due conditions of orthonormality (ϵλijϵλ

′
jk = δikδ

λλ′), transverseness
(ϵλijkj = 0) and tracelessness (Tr

[
ϵλij
]

= 0). Notice that Greek indices have
become Latin indices, as the time components of the field in the TT gauge are
null (h0µ = 0).

With the field expressed in this form, we can execute canonical quantiza-
tion by rewriting the field to operators. We promote the Fourier coefficients to
annihilation and creation operators as follows

hλ (t,k) → b̂λk , (2-128)

h∗
λ (t,k) → b̂λ†

k , (2-129)
which obey the standard commutation relations (from here on we work in units
where ℏ = 1), [

b̂λk, b̂
λ′†
k′

]
= δλλ′δ(3) (k,k′) . (2-130)

The classical field now gets promoted to a quantum field operator and we
can write explicitly

ĥij (t,x) =
∫ d3k√

(2π)3

√8πG
k

ϵλij (k) b̂λkei(k·x−Ωkt) + h.c.

 . (2-131)

Equation (2-131) concludes the description of the setup we will be using for the
gravitational part of our problem; we will mostly consider single-mode metric
perturbations in the following, ∼ hµνe

ikx, corresponding to planar waves of
well-defined frequency. This does not limit the scope of our calculations since,
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under the conditions discussed in the introduction, we will be able to express
any potential initial (quantum) state of gravity as a superposition of plane
waves.

As far as the detector is concerned, we want to model a GW interferometer.
Arvanitaki and Geraci [73] have shown that already a single-mode Fabry-Pérot
cavity is sensitive to gravitational waves. This can be achieved either by inserting
a nanosphere in the setup [73], or by letting one of the two mirrors be free
of moving, as described by Buonanno and Chen in [74], and by Pang and
Chen in [75]. Let us narrow our focus to the second case of study. Pang and
Chen have demonstrated, by making realistic assumptions (see [75]), that a
complete model of a GW interferometer (including power recycling and signal
recycling mirrors) can be mapped to a single Fabry-Pérot cavity where one
mirror is fixed and the other is free to move. This simplifies the complexity of
the interferometer, and we can work with a single cavity of length L0 as the
only degree of freedom to describe our model detector. When a GW of strain h
passes through such a cavity perpendicularly to its axis, its length changes in
the following way:

L0 → L0

(
1 + 1

2h
)
. (2-132)

This can be seen as a “gravitomechanical” coupling between the GW and the
detector, much like an optomechanical coupling between the electromagnetic
field and a mechanical oscillator [76].

Instead of working with the GW coupled to the detector’s mirror, one
can move to a perspective in which the GW couples directly to the cavity’s
electromagnetic field (the laser beam). When the cavity is stretched, its
resonance frequency changes accordingly as

ω0 = nπ

L0
→ ω = nπ

L0
(
1 + 1

2h
) , (2-133)

which can be expanded as

ω = ω0

(
1 − 1

2h+ O
(
h2
))

. (2-134)

The induced frequency shift can be interpreted as producing an effective coupling
between the GW and the electromagnetic field inside the cavity. It turns out,
following [77, 78], that for a + polarized GW propagating in the z direction
perpendicularly to the cavity axis (x direction), and satisfying kxL0 ≪ 1, such
a coupling is represented by an interaction Hamiltonian of the form

Ĥ int
GW = −ω0

4 â
†â
∫ d3k√

(2π)3

√8πG
k

b̂k + h.c.
 . (2-135)

In this expression, â and â† are the annihilation and creation operators of the
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cavity field, which we take to be in a single mode state for simplicity, while the
operators b̂ are defined in (2-128). Notice that, having fixed the polarization of
the GW, the λ index has dropped.

Following a procedure which is standard in quantum optics [79], we
introduce a quantization volume V to define a dimensionless quantity b̂k =
b̂k/

√
V , and transform the continuous integral in Eq. (2-135) into its discretized

version [77]
Ĥ int

GW = −ω0

4 â
†â
∑

k

√8πG
V k

b̂k + h.c.
 . (2-136)

Let us now define, respectively, the single graviton strain fk, the opto-
gravitational coupling constant gk, and the dimensionless coupling qk, in the
following way:

fk =
√

8πG
V k

, gk = ω0fk

4 , qk = gk

Ωk

. (2-137)

Here, k represents the GW frequency for the mode k, where |k| = Ωk. Since qk

is a small number by definition, we will treat it as a perturbative parameter.
With these definitions, the Hamiltonian for the complete system, including the
GW, the cavity field, and their effective interaction, can be defined as

Ĥ = Ĥ0 + Ĥ int
GW , (2-138)

with the free Hamiltonian given by

Ĥ0 = ωâ†â+
∑

k

Ωkb̂
†
kb̂k , (2-139)

and the interaction Hamiltonian further reduced to

Ĥ int
GW = −â†â

∑
k

qkΩk

(
b̂k + b̂†

k

)
, (2-140)

which is precisely the interaction term of the dispersive Hamiltonian, discussed
in 2.2. The derivation of the explicit form of the time evolution operator for
the interaction term (2-140) is a lengthy but straightforward calculation, using
an approach which is standard in quantum optics. As reported in [77,80], we
can express the result for a single mode k (omitting the index for the sake of
readability) as

Û (t) |Ψ (t)⟩ = eqâ
†â[η(t)b̂−η∗(t)b̂†]eiB(t)(â†â)2

|Ψ (t)⟩ , (2-141)

where the time evolution is contained in the definition of

η (t) = 1 − e−it , (2-142)

η∗ (t) = 1 − eit , (2-143)

B (t) = q2 (t− sin (t)) , (2-144)
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and the time-evolving state that appears in (2-141) is defined as |Ψ (t)⟩ =
e−ib̂†b̂t |Ψ⟩.

Note that we are neglecting the effects of optical loss and decoherence in
the cavity, which is a valid approximation for times smaller than the inverse
cavity decay rate, or linewidth. We consider optical coherent states as the
detector’s probe state, for which the main effect of optical loss is to reduce the
state’s amplitude [81]. Within this approximation, we will then be interested in
how the electric field quadratures are affected by the interaction with different
quantum states of the GWs, as predicted by the low energy EFT description of
gravity.



3
Quantum Optics of Gravitational Waves

This chapter is based on the article: Luca Abrahão, Francesco Coradeschi,
Antonia Micol Frassino, Thiago Guerreiro, Jennifer Rittenhouse West and
Enrico Junior Schioppa 2024 Class. Quantum Grav. 41 015029, Quantum
Optics of Gravitational Waves [72].

In the last section, we have showed how one achieves the dispersive
optomechanical interaction, starting from a linearized theory of gravity. In
the following chapter, we will focus in the experimental implications of this
interaction. Furthermore we discuss how the possible quantum nature of the
gravitational wave would induce new behaviour in our detection. We do that by
combining tools used in quantum optics with the description of gravitational
waves via a effective field theory.

Furthermore, we highlight that the formalism presented consists of many
approximations, such as a unitary dynamics and possible quantum fluctuations
arising from the complete theory of quantum gravity, i.e, the contributions
of higher energies. In order to provide a full description, one would need to
consider, for instance, a open quantum system approach, similar from one
described in sec.2.4. This formalism is known in the literature as stochastic
gravity [82]. In addition we will disregard higher energy effects that could,
in principle, be present in the proper quantum gravity theory (here, "proper
quantum gravity" is to be understood according [71]).

We therefore look into how a simplified model of gravitational waves
could, at least in principle, lead to insights regarding the quantum nature of
gravity.

This chapter is disposed as follows. In section 3.1 we apply the unitary
dynamics previously derived in 2.6 to different gravitational waves states,
such as vacuum, coherent and thermal states. In section 3.2 we see how the
gravitational wave affects fluctuations in the electric field and how it could be
used to reconstruct (at least partly) the gravitational wave state. In section 3.3
we discuss, rather speculative, the effects of squeezed gravitational waves that
could be (optimistically) measurable. Nonetheless, until any signal following
the predicted deviations from the classical one shows in the detector, we remain
in the guessing department. We do not prove the existence of such non-classical
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states, but we argue in favor of it in 3.3.1, discussing possible sources. Lastly,
in section 3.4 we briefly discuss the results.

3.1
GW state reconstruction

When examining how a GW interacts with an optical cavity, the most
suitable observable is the electric field operator that characterizes the cavity
field’s state

Ê =
√
ω

Vc

â+ â†
√

2
. (3-1)

This is indeed the physical quantity that one measures at an interferometer to
produce a detectable signal. Note that here Vc denotes the cavity mode volume.

Now that we have defined the operator, we can proceed to calculate the
matrix elements of its time evolution. Our focus will be on the mean value,
specifically when n = 1. The classical GW signal at an interferometer is sensed
as a variation of the phase of the field quadrature:

E → Eeiϕ , (3-2)

where ϕ changes in time. For example, this variation of the phase produces
typical chirp-like signatures observed for binary merger events. Any result we
find that produces a departure of ϕ from its classical behavior, namely which
has the form

E → Eei(ϕ+δϕ) , (3-3)
is interpreted as an effect on the signal. Contrariwise, if we find a modification
of the form

E → E + ϵ , (3-4)
then we are witnessing an effect on the noise.

To begin with, we observe that the expression for the time evolution
operator (2-141) includes an exponential term in q2 (the one defined as B (t)
in (2-144)). However, since the terms in q is dominant, we can disregard this
term for now (although we will revisit it in Sec. 3.1.3). Based on this assumption,
we can use the time evolution of the electric field operator to obtain the following
result

E (t) =
√
ω

Vc

(
⟨Ψ (t)|D̂ [qη (t)] â|Ψ (t)⟩ + h.c.√

2

)
, (3-5)

where we have defined the operator in parenthesis as

D̂ [qη (t)] = eqâ
†â[η(t)b̂−η∗(t)b̂†] . (3-6)

This operator acts on the gravitational field as a displacement operator whose
amplitude is proportional to the optical field’s intensity.

Let us proceed with the selection of specific states within the Hilbert space,
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commencing with the detector component. To a very good approximation, the
electromagnetic field inside the cavity is a monochromatic wave at frequency ω.
From the quantum point of view, we can model it as a single mode coherent
state |α⟩ for some complex number α. With this hypothesis, we can easily trace
out the detector component of the state |Ψ (t)⟩, and we are left with

E (t) =
√
ω

Vc

(
α ⟨Ψg (t)|D̂ [qη (t)]|Ψg (t)⟩ + c.c.√

2

)
, (3-7)

where now the (quantum) GW wavefunction |Ψg⟩ enters into play independently.

3.1.1
Vacuum state

Now, let us consider the possibility of preparing GW states in specific
quantum states, with the simplest one being the vacuum state. The vacuum
state for the generic mode k (that is, a state with no gravitons of energy k)
can be written as:

|Ψg⟩ = |0k (t)⟩ = e−ib̂†
k
b̂kΩkt |0k⟩ = |0⟩ , (3-8)

where we are following the standard harmonic oscillator convention of writing
the eigenstates of the number operator a†

kak as |nk⟩, and |0⟩ is the state with
no gravitons at all. Therefore, to obtain the mean field we must evaluate the
following expression:

E (t) =
√
ω

V

(
α
∏

k ⟨0|D̂ [qkη (Ωkt)]|0⟩ + c.c.√
2

)
. (3-9)

The matrix element is easily calculated by considering that the vacuum can be
seen as the coherent state with α = 0. The displacement operator acting on
such a state gives

D̂ [qkη (Ωkt)] |0⟩ = |qkη (Ωkt)⟩ . (3-10)
Using the normalization condition for coherent states,1 we can rewrite the
previous expression as

⟨0|D̂ [qkη (Ωkt)]|0⟩ = ⟨0|qkη (Ωkt)⟩ = e− 1
2 q

2
k|η(Ωkt)|2 , (3-12)

and thus define
1The normalization condition is that given two coherent states characterized by complex

numbers α and β, one has

⟨α|β⟩ = e− 1
2 (|α|2+|β|2−α∗β−αβ∗) . (3-11)
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D
∏
k

⟨0|D̂ [qkη (Ωkt)]|0⟩ = e− 1
2
∑

k
q2

k|η(Ωkt)|2 . (3-13)

This quantity (3-13) was calculated in [77] by introducing both an infrared and
an ultraviolet cutoff to avoid divergence and by noting that by simple algebra

|η (Ωkt)|2 = 2 [1 − cos (Ωkt)] . (3-14)

The final result for the the mean field, in the case of a vacuum state, is

E (t) =
√

2ω
Vc
DRe{α} . (3-15)

We can express this as equation (3-4), which represents the effect of the
detector’s noise. Essentially, we have determined how the gravitational vacuum
affects the interferometer’s sensitivity curve. However, it is important to note
that this effect is orders of magnitude below any reasonably achievable sensitivity
[77, 83]. In fact, it’s even lower than the theoretical quantum thermal noise of
gravity ( ∼ 10−37 1/

√
Hz) across a wide range of frequencies, as demonstrated

in Figure 3 of [84], where it is clear that such a limit is at least 15 orders of
magnitude below the currently achievable sensitivity curve near ∼ 10−25 1/

√
Hz.

Ultimately, this effect is impractical to measure.
When analyzed more closely, however, we do find an interesting side

result. We performed this calculation after we had neglected the subdominant
q2 term in equation (2-141). Had we retained it, we would have arrived to the
surprising conclusion that the gravitational vacuum induces squeezing of the
cavity field [77]. Once again, after plugging in the right numbers, this effect
turns out to be practically unmeasurable. However, in general, we find that,
unsurprisingly, to achieve a measurable effect in an experiment where gravity
couples to optical observables, one needs to start from gravity modes populated
with a large mean number of gravitons, as we will see in the following.

3.1.2
Coherent state

The simplest state in which we can collect a large mean number of
gravitons together is a coherent state. A calculation similar to the one we
performed to arrive at equation (3-15) can be carried out to derive the effect
on the cavity’s field quadrature of a single mode coherent state of gravity. We
write such state as

|Ψg⟩ =


∣∣∣heiΩGW t

〉
if k = kGW ,

|0⟩ otherwise .
(3-16)
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Here h is real (we set the phase to zero, for simplicity) and is indeed a large
number linked to the population of the mode. Now we must calculate

E (t) =
√
ω

Vc

α
〈
heiΩGW t

∣∣∣D̂ [qGWη (ΩGW t)]
∣∣∣heiΩGW t

〉∏
k ̸=kGW

⟨0|D̂ [qkη (Ωkt)]|0⟩ + c.c.
√

2

 .

(3-17)
When evaluating the k ̸= kGW product, we would obtain a product of terms in
∼ e

1
2 q

2
k which - because of the small value of qk - are all of order 1, much in the

same way as we calculated expression (3-13). This means we can neglect all but

E (t) ∼
√
ω

Vc

α
〈
heiΩGW t

∣∣∣D̂ [qGWη (ΩGW t)]
∣∣∣heiΩGW t

〉
+ c.c.

√
2

 . (3-18)

Again, the full calculation is straightforward, arriving at

E (t) ∼ ei2qh sin Ωt . (3-19)

This expression is of the form (3-3), and it tells us that we are measuring a signal
oscillating in phase with the GW. We have thus recovered the classical GW
signal from a representation of the quantum analog of a classical monochromatic
wave: the single-mode coherent state. This gives us a first validation check of
our program.

3.1.3
GW-induced decoherence

In Sec. 3.1, we initially neglected the q2 terms in the time evolution
operator (2-141). This choice was justified as these terms give rise to effects, such
as the aforementioned squeezing of the cavity field induced by the gravitational
quantum vacuum, that is by far dominated by effects that are linear in q.
However, it is worth paying some more attention to such q-quadratic terms,
as it turns out they produce gravity-induced decoherence. Although the effect
is weak and difficult to measure, it serves as a secondary validation check by
linking our setup to established results.

To see this, let us now repeat the calculations presented in Sec. 3.1 but
this time by preparing our system as an electromagnetic (EM) qubit interacting
with the gravitational vacuum

|Ψ (0)⟩ = |0⟩EM + |N⟩EM√
2

⊗ |0⟩GW (3-20)

where, once again, |N⟩EM (|N⟩GW) denotes a state with N photons (gravitons).
We can now perform the following three steps:

1. Evolve the state using the simplified time evolution operator as expressed
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in equation (3-6);

2. write the total density matrix ρ (t) associated to the time-evolving state;

3. calculate the density matrix ρEM (t) associated to the EM subsystem, by
tracing out the GW degrees of freedom.

When carrying out the calculations, we arrive at the following denity matrix [85]:

ρEM (t) =
 1

2 ρ01

ρ∗
01

1
2

 , (3-21)

where
ρ01 = ⟨0|qNη⟩ = e− 1

2 q
2N2|η|2 . (3-22)

The presence of such time dependent off-diagonal terms (via the time depen-
dence of η (t)) shows indeed that the q2 component of the time evolution
operator is inducing decoherence.

This can be taken farther. By replacing the vacuum |0⟩GW in equa-
tion (3-20) with a GW single mode coherent state |α⟩GW, and repeating the
same calculations, we obtain an EM density matrix of the same form as (3-21),
but now with

ρ01 = e− 1
2 [q2N2|η|2+qN(η∗α−ηα∗)] . (3-23)

When we extend it to a single mode GWs in a thermal state, we obtain

ρ01 = e− 1
2 q

2N2|η|2(1+n) (3-24)

where n is the mean number of gravitons2. This result is useful in that it finally
allows us to consider an ensemble of modes in thermal states. In such a case,
we would need to reintroduce the state index k, and calculate

∏
k

e− 1
2 q

2
kN

2|ηk|2(1+nk) = e− 1
2N

2
∑

k
q2

k|ηk|2(1+nk) (3-26)

For large temperatures T , one approximates (1 + nk) with nk, and T simply
counts the number of gravitons in each mode as

nk = kBT

Ωk

. (3-27)

where kB is Boltzmann’s constant. Using the explicit forms of qk and ηk,
and averaging over the Bose-Einstein distribution (see [85]), we arrive at an
expression of the form

ρ01 ≈ e−Γt , (3-28)
2To arrive at equation (3-24), one should remember that the density matrix of a thermal

state with mean number of gravitons n, can be related to the continuum of coherent states
|α⟩ as

ρ =
∫

d2α

πn
e− |α|2

n |α⟩ ⟨α| . (3-25)
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where
Γ ∝ kBT

(
∆E
Epl

)2

, (3-29)

and ∆E = Nω is the energy of the state |N⟩EM, in accordance with previous
results on gravitational-induced decoherence [86].

3.2
GW-induced electric field fluctuations

Before we continue discussing other gravity wave states, it is important
to comment on the practicality of measuring deviations from the classical
theory with elecrtomagnetic probes. In a previous work [85], we showed that
the measurement problem for our quantum gravitational states can be stated
in terms of photon-number tomography of the optical mode that interacts with
the wave. In particular, we showed that if the GW state is Gaussian, it can
be reconstructed from experimentally accessible data that can be measured
from non-classical (yet macroscopic) observables. Here, we would like to point
out that information on the GW states can also be obtained from field
(homodyne) measurements, which is more practical than a photon-number
resolving measurement experiments.

Reconstruction of the second moments of a general GW state |Ψ⟩ can be
achieved by measuring expectation values of the form ⟨Ψ|D(nqη(t))|Ψ⟩, where
n is an integer [85]. General reconstruction of the first and second moments can
be achieved if we measure these expectation values for n = 1, 2, 3. For coherent
states, this can be done by measuring the first three moments of the electric
field.

The variance of the field is ∆E = ⟨E2⟩ − ⟨E⟩2 and we compute ⟨E2⟩ by
tracing out the detector component. Noticing that

E2(t) = ω

2Vc

(
2a†a− 1 + a2D(−2qη(t)) +

(
a†
)2

D∗(−2qη(t)
)
, (3-30)

we find that for general states,

⟨E2(t)⟩ = ω

2Vc

(
|α|2 − 1 + α2 ⟨Ψg(t)|D̂(2qη(t)|Ψg(t)⟩ + c.c.

)
. (3-31)

Assuming that the gravitational wave is initially a vacuum state, we have

⟨E2⟩ = ω

2Vc

(
α2 ⟨0|D̂ [2qkη (Ωkt)]|0⟩ + α∗2 ⟨0|D̂∗ [2qkη (Ωkt)]|0⟩ − 1 + |α|2

)
.

(3-32)
Analogously,

⟨0|D̂ [2qkη (Ωkt)]|0⟩ = ⟨0|2qkη (Ωkt)⟩ = e−2q2
k|η(Ωkt)|2 , (3-33)

and we can define the quantity,



Chapter 3. Quantum Optics of Gravitational Waves 51

D2
∏
k

⟨0|D̂ [2qkη (Ωkt)]|0⟩ = e−2
∑

k
q2

k|η(Ωkt)|2 . (3-34)

Using the previous equations, the mean square value of the electric field
interacting with the GW (3-32) becomes

⟨E2⟩ = ω

2Vc

[
2D2 Re(α2) − 1 + |α|2

]
. (3-35)

As was shown in [85], to determine the second order correlation functions of
the GW, we need to evaluate terms proportional up to ⟨0|D̂ [3qkη (Ωkt)]|0⟩.
In order to achieve that, we need to go up to the third order moment, the
skewness (∆s), defined as

∆s = ⟨E3⟩ − ⟨E⟩⟨E2⟩ + 2⟨E⟩3 . (3-36)

Note that all the terms in the above definition have already been computed,
except for ⟨E3⟩. We now turn our attention to this particular term. Notice that

E3(t) =
(
ω

2Vc

)3/2 {
a3D[−3qη(t)] + (2a†aa− 3a)D[−qη(t)]

+(2a†a†a− 3a†)D∗[−qη(t)] + (a†)3D∗[−3qη(t)]
}
. (3-37)

For the initial vacuum state we find

⟨E3(t)⟩ =
(
ω

2Vc

)3/2 [
α3 ⟨0|D̂ [3qkη (Ωkt)]|0⟩ +

(
|α|2α− 3α

)
⟨0|D̂ [qkη (Ωkt)]|0⟩ + c.c

]
,

(3-38)
and

⟨E3⟩ =
(
ω

2Vc

)3/2 [
2D3 Re(α3) − 2DRe(α)(3 − |α|2)

]
, (3-39)

where D3 is defined as

D3
∏
k

⟨0|D̂ [3qkη (Ωkt)]|0⟩ = e− 9
2
∑

k
q2

k|η(Ωkt)|2 . (3-40)

With this, we see that the quantities D,D2 and D3 can be obtained from
measurements of the first three moments of the electric field, which in turn can
be measured via homodyne detection. In possession of these quantities, we can
then reconstruct the first and second moments of GW vacuum fluctuations.
This calculation can easily be extended to the case of a coherent sate. GW-
induced electric field fluctuations can also be calculated for other states following
the recipe introduced above, although in general perfect state reconstruction
cannot be achieved from measurements of the electric field moments alone.
These fluctuations could, however, lead to interesting signatures [87].
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3.3
Squeezed gravity

So far, we have considered the vacuum, coherent states, and thermal
states for the gravity modes. While interesting theoretical insight can be gained
by studying these cases, none of them will yield measurable quantum effect
under our assumptions. It is still interesting (and, indeed, a required sanity
check of our approach) that in the case of a highly populated coherent state, we
recover the classical signal even though we started from a completely quantum
picture.

The natural next step in our investigation is asking the question: can any
quantum states of gravity exist that have no classical analog and have a chance
of yielding a detectable effect?

We give a tentative answer to this question by drawing from quantum
optics experience and investigating what happens if we assume that gravity
can live in a squeezed state – the analogue of squeezed states of light that are
routinely produced in optics laboratories. Before going on, we stress that this
assumption implies the existence of some mechanism that does put gravity
into such a state, which is as yet unknown for GWs in the LIGO band. To be
more precise, there is at least one candidate in the category: an established
consensus exists on the hypothesis that inflation might indeed have squeezed
gravity at primordial times; however, once again – much like in the cases of
vacuum corrections or gravitational decoherence – this effect leads to a weak
signal [84]. Nonetheless, calculating the potential signature of a gravitational
squeezed vacuum on our model detector is instructive. After all, we cannot a
priori exclude mechanisms, other than inflation, that could produce squeezing
(see section 3.3.1 for more detailed discussion on this point).

Let us thus prepare gravity in a squeezed state, which we may model as
a mode of the form

|Ψg⟩ =
∣∣∣βe2iΩt

〉
= Ŝ (β) |0⟩ , (3-41)

where the complex number β is the squeezing parameter and Ŝ (β) is the
squeezing operator, as defined in textbooks. The preparation of such squeezed
state (as well as more general non-classical GW states) assumes that the low
energy quantum EFT of gravity is a valid description and that no additional
decoherence mechanisms emerging from a more complete theory of quantum
gravity, for instance stochastic gravity [82], are at play either in the state
preparation of its propagation throughout spacetime. Within this assumption,
the matrix element for the mean electric field (3-5) contains terms of the form

α ⟨0|Ŝ† (β) D̂ [qη (t)] Ŝ (β)|0⟩ , (3-42)
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and after some calculations, which were slightly more involved but nonetheless
straightforward, we arrive at our result:

E (t) ∼ 2α
[
1 − 8q2e2|β| sin4

(
Ωt
2

)]
. (3-43)

This term is of the form of equation (3-4) and it thus tells us that we found an
effect on the noise: a squeezed gravitational vacuum would manifest itself at
an interferometer as an additional, oscillating term, in the noise spectrum of
the instrument [77,83,88]. The most interesting part is that the amplitude of
such an oscillating term contains an exponential factor. Such a factor could
behave as an enhancement term to the noise, depending on the magnitude of
the squeezing parameter β. The magnitude of β, in turn, depends on the details
of the source dynamics, which at this moment we cannot foresee. Nonetheless, if
mechanisms exist in nature that would produce such an exponentially enhanced
effect, we cannot exclude that future, more sensitive detectors could actually
see it. In the subsequent section, we shall delve deeper into this topic.

Something even more interesting happens when we prepare gravity in a
squeezed-coherent state. For a single mode, this would mean

|Ψg⟩ = Ŝ (β) D̂
(
heiΩGW t

)
|0⟩ , (3-44)

where we have used the same notation as in eq. (3-16). Such a state would
represent a squeezed quantum gravitational wave mode propagating from the
source to the detector. The electromagnetic analog would be a squeezed laser
beam, which we are able to generate and propagate in a laboratory.

After calculating the electric field matrix element as usual, for the first
time we find an effect of the type described by equation (3-3) which deviates
from the classical behavior. Specifically, after rewriting β = reiξ, we get

δϕ = 2hq [sin (Ωt) cosh (r) + sin (2ξ − Ωt) sinh (r) − sin (2ξ) sinh (r)] (3-45)

Thus, an exponentially enhanced or suppressed effect, but this time on the
signal. Once again, the magnitude of the effect depends on the dynamics at
the source, which at this point remains unknown. Nonetheless, equation (3-45)
clearly shows how a purely quantum effect (squeezing) involving a state with a
macroscopically high number of gravitons |h|, would produce a signal which
can be exponentially enhanced – even to order one – and can thus be detectable
with current or near future technology [85].



Chapter 3. Quantum Optics of Gravitational Waves 54

3.3.1
Are squeezed gravitational waves produced in nature?

In the framework in which we are working, where GR is seen as a
classical limit of an intermediate-energy effective quantum field theory of (self)-
interacting gravitons, squeezed gravitational waves definitely exist theoretically,
that is, they are allowed states in the Hilbert space of the theory.

The question however remains open on whether there are any realistic
astrophysical sources that could produce GWs with a sizable (i.e. potentially
measurable) amount of squeezing. While the aforementioned hypothesis on the
squeezing of the relic gravitational background induced by inflation seems to be
widely accepted, it is predicted to be too small to be observed at gravitational
interferometers. Drawing on our experience on quantum optics, we can outline
two basic conditions that we can expect to be met in order to have measurable
squeezing in a physical process:

1. The process should involve states characterized by a high – macroscopic –
occupancy number;

2. The resulting state should be capable of propagating (ideally) undisturbed
from source to detector.

Both conditions are naturally met by the processes that produce the grav-
itational waves that we are able to observe. First of all, there is no doubt
that mergers of black holes (or really any other sources of high-intensity GWs)
involve macroscopic number of gravitons (assuming, of course, that gravitons
do exist). Furthermore, gravity is naturally weak-interacting at low energy,
which means a GW basically stops interacting as soon as it leaves its source,
traveling the distance to the detector nearly undisturbed. Note that this con-
trasts sharply with the behaviour of squeezed sources in electromagnetism: in
quantum optics laboratories, squeezed beams of light are commonly produced
by using intense laser beams, which are prone to losing coherence because of
the high probability of interaction with any medium present in the laboratory.
Transporting the quantum state of a laser beam (e.g. a squeezed coherent state)
over long distances from source to detector is thus challenging, and can only be
achieved with great effort in a laboratory. Gravitational waves can be expected
to be free of this problem.

However, even if merger events (or other sources of strong GWs) do satisfy
the minimum requirements to be candidate producers of squeezed gravitational
waves, it is a challenge to understand if they actually produce such states.
Answering this question appears to involve the theoretical treatment of quantum
effects at strongly nonlinear GR regimes, which is beyond our current capacities.
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However, while we are not (yet) capable of providing a formal argument in favour
of the production of squeezed GWs at mergers and similar events (but for some
discussion on the topic, see [85]), we would still like to argue, more heuristically,
that this possibility does deserve further investigation. Let us think once again
of the analogy with quantum optics. Squeezed states of light are produced in
the lab by making intense laser beams interact with anisotropic crystals. In fact,
the mechanism that turns a coherent laser beam into a squeezed coherent laser
beam involves the interaction of intense light with a highly non-linear optical
medium. As electromagnetism is a linear theory at the classical level (nonlinear
effects are only manifest in the quantum regime), producing squeezed light is in
a sense an “exotic” process, in that it needs well-controlled laboratory conditions
and is not found spontaneously in nature. Compare this with the case of gravity.
Contrary to Maxwell’s equations, Einstein’s equations are already nonlinear
at the classical level, and nonlinear effects affect phenomena taking place in
strong regimes [89,90]. This means that squeezing of macroscopic gravitational
waves might well be a natural effect, provided the source is strong enough –
which is definitely true in the case of mergers. Strong nonlinear astronomical
sources, perhaps those already known to emit GWs, seem therefore reasonable
candidates to investigate. A recent step in this direction has been proposed
in [91] where nonlinear effects present in black hole’s ringdown [89,90,92–95]
have been considered.

3.4
Discussion

In this chapter, we have shown explicitly how to make use of quantum
optics in order to derive phenomenological results in quantum gravity in the
weak gravity regime. We focused on the treatment of the problem from the
point of view of the equations of motion and applied the result to a model GW
interferometer interacting with a few possible quantum states of gravity. We
have examined various quantum states ranging from the basic vacuum state to
the coherent state, and ultimately concluded with an evaluation of squeezed
states. Among the ones we evaluated, squeezed-coherent gravitational waves
have proven to be the most promising candidates for providing potentially
detectable quantum aspects of gravity. The findings of Sec. 3.3.1, however basic,
together with the results reported in Sec. 3.3, show how a squeezed coherent
GW could produce an effect on the signal of a GW interferometer, and that
such an effect has the potential of being of order 1. This indicates to us that
further research on the topic - especially regarding the existence of possible
sources - has promise and is worth pursuing.



4
Quantum Induced Stochasticity

This chapter is based on the article: Pedro Paraguassú, Luca Abrahão,
Thiago Guerreiro, ArXiv preprint 2401.16511v1 Quantum Induced Stochastic
Optomechanical Dynamics [96].

In this chapter we will, once again, look for quantum signatures in
a, in principle, non quantum situation. Given the increasing capability of
optomechanical systems in controlling and measuring the nanoparticle’s
dynamics, we are reaching a point where possible quantum features within the
system could start affecting the experimental data.

Motivated by the work of Parikh, Wilzcek and Zahariade [26], regarding
the effect on the detector after we trace out the gravitational wave, we investigate
the analogous effect in an optomechanical system.

(a) (b) (c)

Figure 4.1: Different quantum-classical optomechanical inter-
actions. (a) Quantum light influencing a classical particle. (b)
Quantum particle influencing classical light. (c) Quantum par-
ticle influencing a classical particle.

We study two different systems, showed in fig 4.1: the first consists of a
trapped nanoparticle inside an optical cavity, in which we consider tracing out
both the cavity field and the particle; in the second, we consider two individually
trapped particles interacting via Coulomb.

This procedure allows to seek for how different quantum states of the
traced out system impacts the dynamics of the observed system, since the extra
noise term depends on the quantum state.

To quantify this effects, we use the Influence Functional formalism stated
in the beginning of sec. 2.4 and plug in the actual values of the parameters
currently achieved or pursued by the levitated optomechanics community.
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In 4.1, we develop the whole formalism needed to quantitative describe
each of the cases. We start describing the Hamiltonian of the system in a
general case. Then we proceed to describe the dynamics via a Coherent Path
Integral [97] approach. Afterwards we evaluate the Influence Functional for some
quantum states of interest, such as the squeezed. The final step is to generalize
the formalism, that was up to this point only a mono mode description, to a
more general form. The subsequent sections 4.2, 4.3 are applications of the
formalism considering that we first trace out the quantum states of the cavity
and observe the semiclassical dynamics of the particle and the effect of one
nanoparticle into another, respectively. For completeness, the effects of possible
quantum states of the mechanical particle in the semiclassical dynamics of the
lightfield in the cavity is made in the appendix B. Finally, we briefly discuss
the results.

4.1
Path Integral formulation of linear optomechanical system

Path integrals fundamentally deal with fluctuations, classical or quantum.
We are interested in deriving a classical stochastic equation where fluctuations
arise from interactions with a quantum system. Therefore, double path integrals
for density matrices and the Feynman-Vernon method are the natural tools. In
order to bridge the gap between the Feynman-Vernon method and quantum
optics and optomechanics, we have adapted the theory by combining coherent
state and configuration space path integrals in a single expression for the density
matrix. We find it convenient to express the dynamics of the semiclassical system
in terms of variables in configuration space (position and velocity) while treating
the quantum system in terms of the coherent state basis.

4.1.1
Hamiltonian

We consider a linear optomechanical system consisting of a levitated
nanoparticle of mass m and frequency ωm coupled to an optical cavity mode
with frequency ω. The total Hamiltonian of the system reads

H = Hc +Hm +HI (4-1)

where the free cavity and mechanical Hamiltonians are

Hc/ℏ = ω a†a (4-2)

Hm/ℏ = ωmb
†b (4-3)
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and the interaction reads

HI/ℏ = gq(t)X(t) (4-4)

Here, q(t) and X(t) denote the dimensionless mechanical position and cavity
mode amplitude quadratures, respectively. In terms of creation and annihilation
operators these quantities are q = b + b† and X = a + a†. To recover the
dimensionful position we multiply by the zero point fluctuation,

q ≡ q0q = q0(b+ b†) (4-5)

where q0 =
√
ℏ/2mωm.

Following [26,66,71,98], we are interested in studying how state-dependent
quantum fluctuations of one oscillator affects the semiclassical dynamics of the
other via the interaction HI . To this end, we will construct a path integral
expression for the system’s density matrix and employ the theory of Feynman-
Vernon influence functionals. In doing this, we introduce coherent state path
integrals, a convenient resource for when the Hamiltonian is expressed in terms
of bosonic creation and annihilation operators [97].

4.1.2
Density matrix

We start with the reduced mechanical density matrix in the position basis,

ρb(qt, q′
t, t) = 1

π

∫
d2β ⟨q, β|Uρ0U

† |q′, β⟩ (4-6)
where |q′, β⟩ ≡ |q′⟩ ⊗ |β⟩ is an element of the position-coherent state product
bases with a similar definition for its dual, β is the coherent state amplitude
variable, U is the unitary evolution of the system generated by (4-1) and ρ0

is the initial optomechanical joint density matrix, assumed to be a product
state ρ0 = ρ0,a ⊗ ρ0,b, which is justified provided each subsystem is prepared
independently and the interaction Hamiltonian (4-4) is switched on over a
time scale much shorter than the inverse characteristic frequencies ω−1

m , ω−1.
We will denote qt ≡ q(t) the forward position variable, while q′

t ≡ q′(t) will
be referred to as the backward position variable. Inserting complete bases
1
π

∫
dq0d

2β0|q0, β0⟩⟨q0, β0| of joint position-coherent state states we can rewrite
the reduced density matrix in terms of coherent state propagators,

ρb(qt, q′
t, t) = 1

π3

∫
d2βdq0dq

′
0d

2β0d
2β′

0

×K(qt, β; q0, β0) ⟨q0, β0|ρ0|q′
0, β

′
0⟩ K∗(q′

t, β; q′
0, β

′
0) (4-7)
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where,

K(qt, β; q0, β0) = ⟨qt, β|U |q0, β0⟩ (4-8)

K∗(q′
t, β; q′

0, β
′
0) = ⟨q′

0, β
′
0|U † |q′

t, β⟩ (4-9)

These propagators can in turn be written as the path integral [97];

K(qt, β|q0, β0) =
∫ qt

q0

∫ β

β0
DqDα× e

∫ tf
0 dt[ 1

2 (αα̇∗−α∗α̇)− i
ℏ (Hc(α,α∗)+HI(q,α,α∗)−Lq)],

(4-10)

where Hc(α, α∗) and HI(q, α, α∗) denote the optical and interaction
Hamiltonians in Eqs. (4-2) and (4-4) with the substitutions a → α, a† → α∗,
and Lq is the Lagrangian of the mechanical oscillator,

Lq = 1
2m

(
q̇2 − ω2

mq2
)

(4-11)

The conjugate propagator K∗(q′
t, β; q′

0, β
′
0) is obtained from Eq. (4-10) by

complex conjugation.
For a separable initial joint state ⟨q0, β0|ρ0|q′

0, β
′
0⟩ = ρ0,a(β0, β

′
0)ρ0,b(q0, q

′
0)

and we may write the reduced mechanical density matrix as

ρb(qt, q′
t, t) =

∫
dq0dq

′
0 ρ0,a(q0, q

′
0)J (qt, q′

t|q0, q
′
0), (4-12)

where we define the double path integral propagator,

J (qt, q′
t|q0, q

′
0) =

∫ qt,q′
t

q0,q′
0

DqDq′e
i
ℏ

∫ tf
0 dt(Lq−Lq′)F [q, q′], (4-13)

and F [q, q′] denotes the Feynman-Vernon influence functional [65],

F [q, q′] = 1
π3

∫
d2βd2β0d

2β′
0 ρ0,a(β0, β

′
0)

×
∫ β

β0

∫ β′

β′
0

DαDα′ e
∫ tf

0 dt[ 1
2 (αα̇∗+α′α̇′∗−α∗α̇−α′∗α̇′)]

×e
∫ tf

0 dt[− i
ℏ (Hc(α,α∗)−Hc(α′,α′∗)+HI(q,α)−HI(q′,α′))]. (4-14)

Because we are dealing with the density matrix, i.e. probabilities rather
than amplitudes, we have a double path integral. Furthermore, the path integral
treats the mechanical oscillator in the position bases while the cavity mode
is dealt with in the coherent state bases. Moreover, we can see that both the
Lagrangian and Hamiltonian make an appearance in the expression of the
stochastic propagator, reminiscent of Routhian mechanics [70].
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Since the interaction Hamiltonian is symmetric with respect to the cavity
and mechanical modes, the same derivation can be carried over with the
mechanical system in the coherent state bases, which will be convenient later
on, when we want to study the effective dynamics of the optical mode influenced
by the mechanical oscillator.

The influence functional can be evaluated using the canonical formalism.
Define the time-ordered evolution operator,

Uq = T exp
(

− i

ℏ

∫ tf

0
dtHq[q(t)]

)
, (4-15)

and the reduced propagators,

Kq(β; β0) = ⟨β|Uq |β0⟩ (4-16)

K†
q(β; β′

0) = ⟨β0|U †
q |β⟩ (4-17)

where

Hq[q(t)] = Hc +HI (4-18)

is a restricted cavity-interaction Hamiltonian. For an initial pure state ρ0,a =
|ψ⟩ ⟨ψ| the influence functional becomes

F [q, q′] = 1
π3

∫
d2βd2β0d

2β′
0ρ0,a(β0, β

′
0)

× Kq(β; β0)K†
q(β; β′

0)

= 1
π

∫
d2β ⟨β|Uq |ψ⟩ ⟨ψ|U †

q′ |β⟩

= ⟨ψ|U †
q′Uq |ψ⟩ . (4-19)

Note that this expression can be generalized to mixed states by using the trace
formula for the expectation value. We can move to the interaction picture via
the transformation U †

q → U I†
q′ = U †

q′e− i
ℏHct, where without loss we choose t0 = 0.

The influence functional is then given by

F [q, q′] = ⟨ψ|U I†
q′ U I

q |ψ⟩ , (4-20)

where we define the interaction picture evolution

U I
q = T exp

(
− i

ℏ

∫ tf

0
dtHI [q(t)]

)
(4-21)

When the commutator of the interaction Hamiltonian is a c-number the time
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ordered symbol T can be exchanged by a commutator term [99],

U I
q = e− i

ℏ

∫ τ

0 dtHIe− 1
2ℏ2
∫ tf

0

∫ t

0 dt dt
′[HI(t),HI(t′)] (4-22)

with
HI/ℏ = g q(t)

(
a†(t) + a(t)

)
, (4-23)

and

a†(t) = a†eiωt, a(t) = ae−iωt. (4-24)

After evaluation of the influence functional all the dependence on the
optical degrees of freedom is removed, leaving only path integrals in the forward
and backward position variables q and q′.

4.1.3
Influence functional

As observed in [26], by manipulating Eq. (4-20) via the
Baker–Campbell–Hausdorff formula, we can further simplify the influence
functional to

F [q, q′] = eiΦ0[q,q′]Fψ[q, q′] (4-25)
where the influence phase Φ0[q, q′] splits into two parts,

Φ0[q, q′] = iΦfl
0 + iΦdiss

0 (4-26)

one corresponding to fluctuations,

iΦfl
0 = −g2

2

∫ tf

0

∫ tf

0
dt dt′ (q(t) − q′(t)) (q(t′) − q′(t′)) cos (ω(t− t′)) (4-27)

and another to dissipation

iΦdiss
0 = ig2

∫ tf

0

∫ t

0
dt dt′ (q(t) − q′(t)) (q(t′) + q′(t′)) sin (ω(t− t′)) (4-28)

Further, Eq. (4-25) has the state-dependent factor

Fψ[q, q′] = ⟨ψ| e−a†W ∗
eaW |ψ⟩ , (4-29)

where W is
W = −ig

∫ tf

0
dt (q(t) − q′(t))e−iωt. (4-30)

Note that Fψ[q, q′] is the quantum optical characteristic function evaluated at
W [62]. The influence phase Φ0[q, q′] encodes the effects of vacuum quantum
fluctuations of the optical mode upon the mechanical oscillator and is present
for all quantum states of the optical field. In general, the vacuum influence
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will be modified by the state-dependent term Fψ[q, q′]. We next discuss each
of these terms in detail, starting from a calculation of the effects associated
to the vacuum influence phase. We then generalize the results to squeezed-
coherent and thermal states. We note that the Gaussian character of these
states significantly simplifies the problem at hand, but in principle nothing
prevents one from extending the path integral method to include the effects
associated to non-Gaussian states [100].

4.1.4
Fluctuation and Dissipation

The fluctuation contribution to the influence phase can be written as

iΦfl
0 = −1

2

∫ tf

0

∫ tf

0
dt dt′J(t)A(t, t′)J(t′) (4-31)

where we define

J(t) = q(t) − q′(t) (4-32)

and the two-time noise kernel

A(t, t′) = g2 cos(ω(t− t′)) (4-33)

We now perform the so-called Feynman trick [65], which consists in the
observation that Eq. (4-31) can be written in terms of a path integral over an
auxiliary variable ζ(t),

e− 1
2

∫ tf
0

∫ tf
0 dt dt′J(t)A(t,t′)J(t′) =∫

Dζe− 1
2

∫ tf
0

∫ tf
0 dt dt′ζ(t)A−1(t,t′)ζ(t′)+i

∫ tf
0 dtζ(t)J(t) (4-34)

where
∫ tf

0 dsA(t, s)A−1(s, t′) = δ(t−t′). Effectively, the Feynman trick decouples
the forward and backward variables q and q′ at the expense of introducing
the variable ζ, which is interpreted as a random process with the probability
density functional of the stochastic variable,

P [ζ(t)] = exp
(

−1
2

∫ tf

0

∫ tf

0
dt dt′ζ(t)A−1(t, t′)ζ(t′)

)
. (4-35)

This random process can be thought of as the noise induced by quantum
fluctuations of the optical mode on the mechanical oscillator.

Denoting the stochastic average over P [ζ(t)] by ⟨. . . ⟩ζ , Eq. (4-34) can be
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written as,

⟨e
i
ℏ

∫ tf
0 dtζ(t)J(t)⟩ζ . (4-36)

The mean value and time correlation function of this noise are,

⟨ζ(t)⟩ζ = 0, (4-37)

⟨ζ(t)ζ(t′)⟩ζ = A(t, t′), (4-38)

Since the stochastic variable is Gaussian, the first and second moments are
sufficient to completely describe the process. Note that A(t, t′) ∝ g2, which
implies ζ(t) ∝ g. It will be convenient to write

ζ(t) = gξ(t) . (4-39)

where we define the dimensionless random variable ξ(t).
We now turn to the dissipation contribution given in Eq. (4-28). This term

is non-local in time [101,102] and is given by the integral of a product of two
distinct functions, namely J(t) = (q(t)−q′(t)) and (q(t)+q′(t)). Unlike iΦfl

0 , the
Feynman trick cannot be performed and it cannot be associated to fluctuations.
Consequently, the equations of motion for the forward and backward variables
q and q′ are coupled [101,102]. This coupling is associated to the breaking of
time-reversal symmetry [103], but as we will see, its effects are subleading when
compared to the fluctuations.

4.1.5
Equation of motion

For the ground state |ψ⟩ = |0⟩, the total influence phase yields the
propagator,

J (qt, q′
t|q0, q

′
0) =

∫ qt,q′
t

q0,q′
0

DqDq′
∫

Dζ exp
(

−1
2

∫ tf

0

∫ tf

0
dtdt′ ζ(t)A−1(t, t′)ζ(t′)

)
× exp

(
i

ℏ

∫ tf

0
dt (Lq − Lq′)

)
× exp

(
i

ℏ

∫ tf

0
dt

(
ℏζ(t)
q0

)
(q(t) − q′(t))

)

× exp
(
i

ℏ

(
ℏg2

q2
0

)∫ tf

0

∫ t

0
dt dt′ (q(t) − q′(t)) (q(t′) + q′(t′)) sin (ω(t− t′))

)
(4-40)

The first line shows the stochastic density kernel. The second line contains
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the dynamics of the mechanical oscillator. In the third line there is the coupling
between the stochastic variable ζ(t) and the forward and backward position
variables. Note here that writing the arguments in the exponential in terms of
the dimensionful oscillator position forces the appearance of the combination
ℏζ/q0 = ℏgξ/q0, which has dimension of force. Finally, the last term consists in
the non-local dissipation coupling the q and q′ variables.

Extremising the argument in the exponentials of (4-40) with respect to
q(t) and q′(t) leads to effective Langevin-like equations for the forward and
backward paths. In general these are coupled stochastic differential equations,
with the coupled terms arising from the cross-terms in the dissipation phase
Φdiss

0 . As customary, we will neglect the coupling between forward and backward
paths and take the ansatz q(t) = q′(t) [26, 67]. As consequence, the dynamics
of the forward and backward paths obey the same equation of motion. This
corresponds to expressing the action in terms of symmetric (q(t) + q′(t))/2 and
antisymmetric (q(t) − q′(t)) paths and expanding to leading order terms in the
anti-symmetric path, as was also done in [26].

We find the Langevin-like equation of motion

mq̈(t) +mω2
mq = fQ(t) + fdiss(t) (4-41)

where we define the quantum fluctuation force,

fQ(t) ≡ ℏζ(t)
q0

=
(
ℏg
q0

)
ξ(t) (4-42)

with correlation function

⟨fQ(t)fQ(t′)⟩ =
(
ℏg
q0

)2

cos(ω(t− t′)), (4-43)

where the expected value is taken over the distribution of fQ(t), which is
analogous to Eq. (4-76) but rescaled with ℏg/q0, and the dissipative force,

fdiss(t) = 2ℏg
2

q2
0

∫ t

0
dt′q(t′) sin(ω(t− t′)) (4-44)

An analogous equation is obtained for q′(t). In the semiclassical regime,
Newton’s second law is modified by an additional fluctuation term originating
from quantum fluctuations and a dissipation force with memory.

It is interesting to observe the scaling of the stochastic quantum force fQ(t)
with Planck’s constant. Substituting the zero point motion of the oscillator we
find fQ(t) ∝

√
ℏ, while ⟨fQ(t)fQ(t′)⟩ ∝ ℏ, making the quantum origin of the

fluctuations explicit. Note that ℏ drops out of the dissipation force fdiss.
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For more general quantum states, additional noise contributions and
deterministic forces might arise. In that case, the stochastic variable ζ will in
general be substituted by a sum of uncorrelated stochastic forces ζ(t) → ∑

i ζi

satisfying the independence condition ⟨ζiζj⟩ = g2δijAi. We now turn to the
calculation of the noise for quantum states of interest to optomechanical
experiments, notably squeezed-coherent and squeezed-thermal states.

4.1.6
Squeezed-coherent states

As in 2.1.3 we define a squeezed coherent state as,

|Ψ⟩ = S(z) |α⟩ (4-45)

where α = |α|eiθ is the coherent state amplitude and the squeezing operator
reads,

S(z) = e
1
2 z

∗a2+ 1
2 za

†2 (4-46)

with z = reiϕ. We refer to r as the squeezing parameter and ϕ as the squeezing
phase. Using the identities,

S†(r, ϕ)aS(r, ϕ) = a cosh r − a†e2iϕ sinh r,

S†(r, ϕ)a†S(r, ϕ) = a† cosh r − ae−2iϕ sinh r.
(4-47)

the influence functional can be brought to the form,

Fsq[q, q′] = eiΦ0[q,q′]+iΦ0,sq[q,q′]Fα[q, q′], (4-48)

where,

Fα[q, q′] = ⟨α| e−a†f(W )eaf(W )∗ |α⟩ (4-49)

and we define,
f(W ) = W ∗ cosh r +We2iϕ sinh r, (4-50)

In addition to the vacuum phase, squeezed-coherent states acquire a squeezing
phase which can be split into a stationary and a non-stationary transient
contribution,

iΦ0,sq[q, q′] = iΦst
0,sq + iΦn−stat

0,sq (4-51)

with,

iΦst
0,sq = −g2

2 (cosh 2r − 1)
∫ τ

0

∫ τ

0
dtdt′ J(t) cos (ω(t− t′)) J(t′)
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(4-52)

and

iΦn−st
0,sq = −g2

2 (sinh 2r)
∫ tf

0

∫ tf

0
dtdt′ J(t) cos (ω(t+ t′) − 2ϕ) J(t′).

(4-53)

The stationary contribution of the influence phase due to squeezing adds to the
vacuum phase iΦfl

0, yielding an enhanced phase proportional to cosh(2r). At
the same time, we find a non-stationary contribution carrying the information
on the squeezing phase ϕ. No additional contribution to the dissipation appears
due to squeezing.

We can proceed to perform the Feynman trick for the stationary and
non-stationary phase contributions. Introducing auxiliary stochastic variables
for each phase in the path integral we arrive at

⟨ζst(t)ζst(t′)⟩ = g2 cosh(2r) cos(ω(t− t′)) (4-54)

for the stationary and

⟨ζn−stat(t)ζn−stat(t′)⟩ = g2 sinh(2r) cos(ω(t+ t′) − 2ϕ)

(4-55)

for the non-stationary terms. Note both stochastic forces are exponentially
enhanced in the squeezing parameter, ζst ∝ g

√
cosh(2r) and ζn−stat ∝

g
√

sinh(2r). This implies an enhancement in the quantum force due to
squeezing,

f st
Q (t) =

√
cosh(2r)

(
ℏg
q0

)
ξst(t) (4-56)

fn−st
Q (t) =

√
sinh(2r)

(
ℏg
q0

)
ξn−st(t) (4-57)

where ξst(t) and ξn−st(t) denote the stationary and non-stationary dimensionless
random force variables with correlation functions

⟨ξst(t)ξst(t′)⟩ = cos(ω(t− t′)) (4-58)

⟨ξn−st(t)ξn−st(t′)⟩ = cos(ω(t+ t′) − 2ϕ) (4-59)

Besides the stationary and non-stationary stochastic forces, the squeezed-
coherent state also yields a deterministic force arising from the Fα[q, q′] factor
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in Eq. (4-48). We have,

Fα[q, q′] = e−α∗f(W )eαf(W )∗ = eiΦα,sq , (4-60)

where iΦα,sq denotes the additional influence phase containing the effects of
both the coherent and squeezed nature of the state |Ψ⟩. Direct calculation
shows that,

iΦα,sq[q, q′] = i

ℏ

∫ τ

0
dt (q(t) − q′(t)) fΨ(t) (4-61)

where,

fΨ(t) = −2|α|
(
ℏg
q0

)
(sin (ωt− θ − 2ϕ) sinh r + cos (ωt+ θ) cosh r) . (4-62)

Note that fΨ(t) represents a deterministic force enhanced by the coherent state
amplitude |α| and by the exponential squeezing factors sinh r and cosh r. This
deterministic force is also quantum mechanical in origin and fΨ(t) ∝

√
ℏ. It is

also interesting to note that this force performs work on the mechanical system.
In stochastic thermodynamics this work behaves as a random variable and is
described by W [q(t)] =

∫
fΨ(t) · q̇(t)dt [104–106]. A statistical approach can be

employed to characterize this work function [107–109].

4.1.7
Squeezed-thermal states

We define squeezed-thermal states as

ρsq,th = S(z)ρthS
†(z) (4-63)

where

ρth =
(
1 − e−βℏω

)∑
n

eβℏωn |n⟩ ⟨n| , (4-64)

and β is the inverse temperature associated to the quantum oscillator. The
influence functional assumes the same form as in Eq. (4-48),

Fsq,th[q, q′] = eiΦ0+iΦ0,sqFsq,th[q, q′] (4-65)

where,

Fsq,th[q, q′] =
(
1 − e−βℏω

)∑
n

eβℏωn ⟨n| e−a†f(W )eaf(W )∗ |n⟩ (4-66)
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This sum can be solved analytically, as showed in [26], and the total influence
functional (4-65) is expressed in terms of a phase eiΦsq,th . The final result again
contains stationary and non-stationary terms,

iΦsq,th[q, q′] = iΦst
sq,th + iΦn−stat

sq,th (4-67)

with

iΦst
sq,th = −g2

2 cosh(2r) coth
(
βℏω

2

)∫ tf

0

∫ tf

0
dtdt′ J(t) cos (ω(t− t′)) J(t′)

(4-68)

iΦn−st
sq,th = −g2

2 sinh(2r) coth
(
βℏω

2

)∫ tf

0

∫ tf

0
dtdt′ J(t) cos (ω(t+ t′) − 2ϕ) J(t′).

(4-69)

Once again, we apply the Feynman trick to obtain the stationary and non-
stationary stochastic forces, now appearing with enhancement factors due to
to the squeezing and thermal nature of the state,

f st
Q (t) =

[
cosh(2r) coth

(
βℏω

2

)]1/2 (ℏg
q0

)
ξst(t)

(4-70)

fn−st
Q (t) =

[
sinh(2r) coth

(
βℏω

2

)]1/2 (ℏg
q0

)
ξn−st(t)

(4-71)

where ξst(t) and ξn−st(t) also satisfy (4-58) and (4-59). No additional contribu-
tion to the dissipation and deterministic force appears. This is expected, since
the mean value of the field amplitude quadrature is zero for squeezed-thermal
states.

4.1.8
Sum over modes

So far, we have only dealt with the noise contribution arising from a single
mode of the optical field. In many applications, we are interested in considering
multimode systems. The Feynman-Vernon influence functional then acquires a
contribution from each mode [49]. Consider for example a multimode cavity. In
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a discrete N -mode approximation, the Hamiltonian is schematically written as

Hc/ℏ =
N∑
k

ωka
†
kak (4-72)

where k = ω/c, and the quantum state of the cavity reads,

|Ψ⟩ =
N⊗
k

|ψωk
⟩ (4-73)

The Feynman-Vernon influence functional becomes,

F [q, q′] =
N∏
k

Fωk
[q, q′]. (4-74)

In the continuum limit, we must take into account the cavity density of states
N (ω) [49]. The total influence phase is then,

Φ[q, q′] =
N∑
k

Φωk
[q, q′] N→∞−−−→

∫ ∞

0
dωN (ω)Φω[q, q′] (4-75)

For an optical cavity, the density of modes is [110],

N (ω) = 1
π

γ

(ω − ωc)2 + γ2 , (4-76)

where ωc is the cavity central frequency and γ the cavity damping rate.
Note that the interaction strength of the mechanical oscillator with a

given cavity mode k is frequency dependent g = g(ω), which must be taken
into account in the integration in the r.h.s. of Eq. (4-75). The dissipation force
(4-44) becomes

fdiss = 2ℏ
q2

0

∫ ∞

0
dωN (ω)g2(ω)

∫ t

0
dt′q(t′) sin(ω(t− t′))

(4-77)

In the case of squeezed-coherent states, the deterministic force reads,

fΨ(t) = −2|α| ℏ
q0

∫ ∞

0
dωN (ω)g(ω) (cos (ωt+ θ) cosh r + sin (ωt− θ − 2ϕ) sinh r)

(4-78)

Lastly, the stationary and non-stationary noise correlators are,

⟨f st
Q (t)f st

Q (t′)⟩ =
(
ℏ
q0

)2 ∫ ∞

0
dωN (ω)g2(ω) cos (ω(t− t′)) (4-79)

⟨fn−st
Q (t)fn−st

Q (t′)⟩ =
(
ℏ
q0

)2 ∫ ∞

0
dωN (ω)g2(ω) cos (ω(t+ t′) − 2ϕ) (4-80)
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where, in the case of squeezed and thermal states the appropriate enhancement
factors must be included. Note that this sum over modes approach can be
complemented by an open quantum system model of a cavity interacting with
free electromagnetic modes within the formalism of path integrals [111] in an
analogous fashion to the quantum Langevin equations [48].

4.2
Semiclassical particle as probe of quantum light

We are now in the position to apply the Feynman-Vernon theory to
a semiclassical levitated nanoparticle in an optical cavity interacting with a
quantum light reservoir via coherent scattering.

4.2.1
Optomechanical parameters

The coherent scattering coupling rate is given by [1]

ℏg = αE0Eckq0 sin(kr0) sin θ (4-81)

where α = 3ϵ0V
(
ϵr−1
ϵr+2

)
is the polarizability of a dielectric particle of volume V ,

refractive index n and relative permittivity ϵr ≈ n2, E0 is the tweezer field, r0 is
the mean particle position within the cavity, θ is the angle between the tweezer
polarization and the cavity axis and Ec is the cavity electric field strength, given
by

Ec =
√

ℏω
2ϵ0Vc

(4-82)

where Vc is the cavity mode volume. We will assume the particle is placed at a
cavity node and the tweezer polarization is orthogonal to the cavity axis such
that sin(kr0) = sin θ = 1; placing the particle at a node only mildly affects the
cavity finesse [1], and hence we will neglect any additional losses introduced by
the particle. We note also that the coherent scattering interaction strength can
be tuned and switched on and off by placing the particle at different positions
within the cavity or by controlling the polarization of the tweezer field [112].

For a confocal cavity of length L the mode volume in Eq. (4-82) is given
by Vc = w2

cπL/4, where the cavity waist is wc =
√
cL/ω. In terms of the mode

frequency ω the optomechanical coupling rate then reads

g ≡ g(ω) = aω2 (4-83)
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where

a = αE0√
πϵ0c3L2mωm

(4-84)

Note that g is independent of ℏ as it drops out of Eq. (4-81).
We will find it convenient to define the optomechanical coupling rate at

the cavity central frequency,

gc ≡ g(ωc) (4-85)

as well as the dimensionless frequency ratios,

ε ≡ gc/ωm (4-86)

ν ≡ γ/ωc (4-87)

and the characteristic force associated to the central optomechanical coupling,

f0 ≡ ℏgc/q0 (4-88)

Table 4.1 shows a list of the parameters we will assume for the cavity op-
tomechanical system, similar to the ones described in [1]. Note the dimensionless
parameters ε, ν ≪ 1.

4.2.2
Vacuum fluctuations and dissipation

We can calculate the stochastic force fQ(t) associated to the vacuum
fluctuations in the optical cavity using Eq. (4-79). In this case we only have
the stationary process with noise kernel,

⟨fQ(t)fQ(t′)⟩ = γ

π

(
ℏa
q0

)2 ∫ ∞

0
dω
ω4 cos(ω(t− t′))
(ω − ωc)2 + γ2 (4-89)

where we omit the stationary ‘st’ superscript for simplicity. The frequency
integral (4-89) can be solved in terms of distributions – we refer to Appendix
A for the details. We find that the vacuum state introduces three independent
stationary stochastic force components,

fQ(t) = f0
∑
i

ξi(t) (4-90)
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with the correlation functions

⟨ξi(t)ξj(t′)⟩ = δijAi(τ) (4-91)

where, τ ≡ t− t′ and

A1(τ) = e−γ|τ |
(
(1 − 6ν2 + ν4) cos(ωcτ) − 4(ν − ν3) sin(ωc|τ |)

)
(4-92)

A2(τ) =
(
3ν − ν3

) δ(τ)
ωc

(4-93)

A3(τ) = ν
δ′′(τ)
ω3
c

(4-94)

The correlator in Eq. (4-92) resembles active noise with a relative phase shift
between the sine and cosine components [113,114]. Colored noise can be generally
expressed as an expansion in terms of derivatives of the delta distribution [115],
hence the second and third terms represent additional colored noise. Moreover,
the second derivative delta noise has appeared previously in the context of
stochastic gravity [116].

The leading contribution to the stochastic force correlator comes from
the zeroth order term in ν. We approximate the stochastic force correlator as

⟨fQ(t)fQ(t′)⟩ ≈ f2
0 e

−γ|τ | cos(ωcτ) (4-95)

Observe the characteristic scale of the stochastic force is given by f0.
We now turn to the dissipation. Substituting Eqs. (4-76) and (4-83) into

(4-77) we arrive at

fdiss = 2
π

ℏγ
q0
a2
∫ t

0
dt′q(t′)

∫ ∞

0
dω

ω4 sin(ωτ)
(ω − ωc)2 + γ2 (4-96)

Once again, the frequency integral can be evaluated in terms of distributions,
see Appendix A for details. We find the dissipation force,

fdiss = f0

[
12ν

(
gc
ωc

)
q̇(t)
ωc

+ εu(t)
]

(4-97)

where

u(t) = 2
∫ t

0
d(ωmt′)e−γ|τ |

(
(1 − 6ν2 + ν4) sin(ωcτ)

+4(ν − ν3)sgn(τ) cos(ωcτ)
)
q(t′). (4-98)

We see the total dissipation force fdiss consists of a standard velocity-dependent
term plus a modification of the mechanical spring constant with a memory
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kernel.
The dissipation is small when compared to the fluctuation force. From

Table 4.1, gc ≈ 0.1γ, while ωm ≈ γ. Moreover, q̇(t) ≈ ωmq(t). Hence, the first
term in Eq. (4-97) is O(ν3), while the second term is at most of order O(ε)
in units of f0. We will henceforth neglect dissipation effects arising from the
influence functional.

4.2.3
Particle dynamics

We arrive at the equation of motion for the mechanical oscillator,

mq̈ + Γmq̇ +mω2
mq = fQ(t) + fdiss + η(t) (4-99)

where we have added phenomenologically a dissipation with damping coefficient
Γm and the thermal white noise η(t) with

⟨η(t)η(t′)⟩ = 2ΓmkBTbathδ(τ) (4-100)

where Tbath is the temperature of the particle’s environment. This term accounts
for the Brownian motion of the particle, as derived in sec.2.4. Note the stochastic
quantum force fQ(t) might contain stationary and non-stationary components
and is accompanied by a state-dependent correlation function. For example,
for the vacuum state, the correlation function of fQ(t) is given in Eq. (4-95).

Considering only the zeroth order terms in the dimensionless parameters
ν and ε, the equation of motion simplifies to

mq̈ + Γmq̇ +mω2
mq ≈ fQ(t) + η(t) (4-101)

We have the formal solution

q(t) = e−γmt

mΩm

∫ t

0
dseγms sin (Ωm(s− t)) (fQ(s) + η(s)) (4-102)

where,

γm ≡ Γm/2m (4-103)

Ωm ≡
√
ω2
m − γ2

m (4-104)

and, for simplicity, we assume initial conditions q(0) = q̇(0) = 0. For a particle
with a radius of 70 nm at pressures around 10−9 mbar, γm ≈ 5 × 10−6 Hz so
we have Ωm ≈ ωm [44].
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Let σq ≡
√

⟨q2(t)⟩ be the particle’s position root-mean-square (rms). We
are interested in calculating σq while the particle interacts with a quantum
state populating the cavity and an external thermal reservoir. The position
rms σ2

q then has two independent contributions, one from the quantum force
fQ(t) and the other from the uncorrelated thermal noise η(t). We define the
excess quantum-induced fluctuations as

∆σ2
q = σ2

q − σ2
0 (4-105)

where σ2
0 denotes the non-quantum contribution to σ2

q arising from the thermal
fluctuations η(t) and

∆σ2
q = e−2γmt

m2Ω2
m

∫ t

0

∫ t

0
dsds′eγm(s+s′) sin (Ωm(s− t)) sin (Ωm(s′ − t)) ⟨fQ(s)fQ(s′)⟩

(4-106)

The solution to this integral is exact but cumbersome. In essence, ∆σq reaches
a steady state with characteristic value is given by

∆σq ≈ f0

m
√

Ω3
mωc

(4-107)

As we will see in Sec. 4.2.6, this quantum contribution to the particle’s
position rms is negligible for current experiments with levitated nanoparticles.

4.2.4
Squeezed-coherent states

We now consider squeezed-coherent states. Due to their displacement in
phase space, these states introduce a deterministic force on the particle given
by,

fψ = −2|α|
π

ℏγ
q0
a
∫ ∞

0
dω

ω2

(ω − ωc)2 + γ2 (cos (ωt+ θ) cosh r + sin (ωt− θ − 2ϕ) sinh r) .

(4-108)

Again, this integral can be solved following the steps in Appendix A.
For simplicity, consider a real coherent state amplitude (θ = 0). To leading

order in O(ν0) the deterministic force reads

fψ = f0|α| e−γt [2 cosh r cos(ωct) + sinh r (sin 2ϕ sin(ωct) − 2 cos 2ϕ cos(ωct))] .

(4-109)
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This is a fast oscillating force, which time averages to zero. Note, however, that
it exhibits an exponential enhancement due to squeezing and, depending on
the squeezing phase, this force can be exponentially enhanced or suppressed.
The same enhancement/suppression effects as a function of squeezing phase
have been shown to appear in the context of a quantized gravitational wave in
a squeezed-coherent state interacting with an optical cavity [25].

The stationary noise associated to squeezing assumes the same form as
the vacuum, but is enhanced exponentially in the squeezing parameter,

f st
Q (t) =

√
cosh(2r) f0

∑
i

ξi(t) (4-110)

where the dimensionless stochastic variables ξi(t) satisfy Eqs. (4-91)-(4-94).
The noise correlation function to zeroth order in ν is approximated by

⟨f st
Q (t)f st

Q (t′)⟩ ≈ cosh(2r) f2
0 e

−γ|τ | cos(ωcτ) (4-111)

Squeezed-coherent states also exhibit the non-stationary noise defined in
Eq. (4-80). To zeroth order in ν,

⟨fn−st
Q (t)fn−st

Q (t′)⟩ ≈ sinh(2r) f2
0 e

−γ(t+t′)

×
(

cos(2ϕ)
2 cos(ωc(t+ t′)) + sin(2ϕ) sin(ωc(t+ t′))

)
(4-112)

This non-stationary noise is also exponentially enhanced, despite decaying with
a characteristic time given by γ−1. Note, however, that fn−st

Q (t) depends on the
squeezing angle ϕ, and is maximized for ϕ = π/2. In that case, for short times
fn−st
Q (t) ≈ f st

Q (t) and the effects of the non-stationary and stationary noises
becomes comparable.

Finally, no additional contribution to the dissipation arises from squeezing.
We conclude that for long times, the squeezed-coherent state contributes to
the particle’s rms as

∆σq ≈
√

cosh(2r) f0

m
√

Ω3
mωc

(4-113)
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4.2.5
Squeezed-thermal states

Squeezed-thermal states also present stationary and non-stationary noise
defined by,

⟨f st
Q (t)f st

Q (t′)⟩ = cosh(2r)γ
π

(
ℏa
q0

)2 ∫ ∞

0
dω
ω4 coth

(
βℏω

2

)
cos (ωτ)

(ω − ωc)2 + γ2 , (4-114)

⟨fn−st
Q (t)fn−st

Q (t′)⟩ = sinh(2r)γ
π

(
ℏa
q0

)2 ∫ ∞

0
dω
ω4 coth

(
βℏω

2

)
cos (ω(t+ t′) − 2ϕ)

(ω − ωc)2 + γ2 .

(4-115)

In the high temperature limit coth(βℏω/2) → 2/(βℏω) and the integrals
can be solved analytically, following similar steps given in the Appendix A. We
find for the stationary noise,

f st
Q (t) =

[
cosh(2r)

(
kBT

ℏωc

)]1/2

f0
∑
i

ξi(t) (4-116)

where ξi=1,2 are independent random variables with correlators,

A1(τ) = 2e−γ|τ |
(
(1 − 3ν2) cos(ωcτ) − (ν − ν3) sin(ωc|τ |)

)
(4-117)

A2(τ) = 8ν δ(τ)
ωc

(4-118)

Once again, considering only the zeroth order terms in ν we can approximate
the stationary noise correlator as

⟨f st
Q (t)f st

Q (t′)⟩ ≈ 2 cosh(2r)
(
kBT

ℏωc

)
f2
0 e

−γ|τ | cos(ωcτ) (4-119)

We see that besides the exponential squeezing enhancement the thermal state
further increases the noise in proportion to its temperature.

Moving on to the non-stationary noise, we find to zeroth order in ν,

⟨fn−st
Q (t)fn−st

Q (t′)⟩ ≈ sinh(2r)
(
kBT

ℏωc

)
f2
0 e

−γ(t+t′)

× [2 cos(2ϕ) cos(ωc(t+ t′)) − sin(2ϕ) sin(ωc(t+ t′))] (4-120)
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For the squeezed-thermal state the particle’s position rms is modified to

∆σq ≈
[
2 cosh(2r)

(
kBT

ℏωc

)]1/2 f0

m
√

Ω3
mωc

(4-121)

presenting an enhancement both due to squeezing and temperature of the
optical reservoir.

In the absence of squeezing we can show that the fluctuation-dissipation
relation holds [117]. Define

T (t, t′) = 2
π

γ

ℏω4
c

f2
0

∫ ∞

0
dω

ω3 cos(ωτ)
(ω − ωc)2 + γ2 (4-122)

and observe that Eq. (4-77) can be written as,

fdiss =
∫ t

0
Ṫ (t, t′)q(t′)dt′

= −
∫ t

0
T (t, t′)q̇(t′)dt′ (4-123)

where we have integrated by parts and assumed vanishing boundary terms.
Moreover, from Eqs. (4-114) and (4-122) we have

⟨f st
Q (t)f st

Q (t′)⟩ = 1
β
T (t, t′) (4-124)

Hence, for a high occupation thermal state the dissipation and fluctuation
kernels are related as usual.

4.2.6
Quantitative estimations

We can now estimate how large is the quantum contribution to the
particle’s position rms due to interaction with an optical reservoir in the vacuum,
squeezed-coherent and squeezed-thermal states given the optomechanical
parameters in Table 4.1.

The characteristic value of the quantum stochastic force is

f0 ≈ 10−18 N (4-125)

which is about 100 times stronger than the gravitational force between two
Planck masses at a 1 mm separation distance [118]. For the vacuum, the
parameters in Table 4.1 give

(∆σq)vac ≈ 2 × 10−6q0 , (4-126)
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well below the zero point fluctuations of the mechanical ground state and hence
negligible.

The exponential enhancement provided by squeezing can be used to im-
prove (4-126). For example, for a squeezing parameter of r = 14, corresponding
to ≈ 60 dB of quadrature squeezing, we find

(∆σq)sq ≈ 2q0 (4-127)

This is arguably an enormous amount of squeezing, to be compared to state-of-
the-art squeezing sources operating producing states around 10 dB [119].

We can relax the amount of squeezing if we populate the cavity with a
squeezed-thermal state. For instance, a state with kBT/ℏωc = 105 and 12 dB
squeezing produces (∆σq)sq,th ≈ 2q0.

Parameter Symbol Units Value
Cavity length L cm 3.0

Cavity central frequency ωc PHz 1.22
Cavity linewidth γ kHz 2π × 193

Particle mass m fg 2.8
Mechanical frequency ωm kHz 2π × 190
Zero point fluctuation q0 m 3.6 × 10−12

Damping rate at γm Hz 5 × 10−6

Coupling rate at ωc gc kHz 2π × 18

Coupling-to-mech. freq. ratio ε - 0.1
Cavity linewidth-to-freq. ratio ν - 10−9

Table 4.1: Coherent scattering optomechanical parameters.
Values adapted from [1].

4.3
Semiclassical particle as probe of quantum particle

We turn to two linearly coupled mechanical oscillators. Different coupling
mechanisms between levitated nanoparticles have been recently demonstrated,
such as the Coulomb interaction [2, 120], optical binding [2, 121] and cavity-
mediated interactions [122].

From now on modes a and b in the Hamiltonian (4-1) are interpreted as
two identical harmonically trapped nanoparticles with frequencies ωa, ωb. We
consider ωa ≳ ωb and trace out mode a, assumed to be the quantum system.
For simplicity, we will neglect external decoherence acting on the quantum
system, although we note that these effects can also be taken into account using
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Parameter Symbol Units Value
Charge Qa,b e 250

Interparticle distance d µm 2.0
Bare frequency a ωa kHz 2π × 190
Bare frequency b ωb kHz 2π × 180

Modified frequency a Ωa kHz 2π × 147
Modified frequency b Ωb kHz 2π × 134

Zero point fluctuation a q0,a m 4.1 × 10−12

Zero point fluctuation b q0,b m 4.3 × 10−12

Coulomb coupling rate ge kHz 2π × 51
Coupling-to-freq. ratio ge/Ωa,b - ≈ 0.34

Table 4.2: Coulomb interaction parameters. Values adapted
from [2,3].

the path integral formalism [111]. We also neglect the mechanical damping γm
and as in Sec. B, our conclusions will be valid for times t ≪ γ−1

m .
As an example of coupling mechanism we consider the Coulomb interaction

between charged particles. For small displacements with respect to the trap
center the Coulomb potential is approximated by [3],

Ve = − QaQb

8πϵ0d3 (qa − qb)2 (4-128)

where Qa,b denotes the charges of the particles and d the interparticle separation.
This leads to a change in the bare mechanical frequencies ωa,b given by

Ωa,b =
√
ω2
a,b − QaQb

4πϵ0md3 (4-129)

and a linear coupling with rate

ge = −QaQb

4πϵ0ℏ

(
q0,aq0,b

d3

)
(4-130)

where q0,a, q0,b are the zero point fluctuations of each oscillator now defined
in terms of Ωa and Ωb, respectively. The sign of the interaction depends on
the charges of the particles. Oppositely charged particles have ge > 0, while
like charged particles have ge < 0. Note that the interaction can also be
switched on and off by controlling the charge of the nanoparticles [123–125].
This can be exploited to prepare the particle in an initial separable state and
subsequently turn the interaction on over a time scale much shorter than
ω−1
a , ω−1

b . Throughout this section, we will consider the parameters in Table
4.2 with values adapted from [2,3].
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4.3.1
Quantitative estimations

Following Secs. 4.2 we can write the excess rms of the semiclassical particle
linearly coupled to the quantum particle in the ground state,

∆σ2
qb

= 1
(κ2 − 1)2

(
f0

mΩ2
b

)2

h(t) (4-131)

where h(t) is given in Eq. (B-21) and we have redefined κ = Ωa/Ωb. Here the
characteristic force f0 defined in Eq. (4-88) is evaluated at the Coulomb rate
ge. For the parameters in Table 4.2, f0 ≈ 7 × 10−18 N. Figure 4.2(a) shows the
position rms, given by Eq. (4-105), of the semiclassical particle as a function
of time, initially in a thermal state with mean occupation number n̄b = 10
and standard deviation σ0 =

√
2n̄b + 1 × q0,b ≈ 4.6 × q0,b. As a consequence

of the interaction, the standard deviation cyclically oscillates between σ0 and
≈ 9 × q0,b, representing heating and recooling of the particle motion. Note the
position rms can become smaller than σ0, as shown in the inset in Figure 4.2(b).
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Figure 4.2: (a) Position uncertainty of a thermal semiclassical
particle with n̄b = 10 phonons influenced by a quantum particle
in the ground state via Coulomb interaction (blue curve), in
comparison to the thermal state position standard deviation
σ0 ≈ 4.6q0,b (red dashed line). (b) Inset: repeated cooling and
heating of the semiclassical particle.

A squeezed mechanical state will yield an exponentially enhanced effect,
with the excess stationary quantum noise given by,

(∆σst
qb

)2 = cosh (2r)∆σ2
qb

(4-132)

and a non-stationary contribution
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(∆σn−st
qb

)2 = sinh(2r)
(κ2 − 1)2

(
f0

mΩ2
b

)2

hϕ(t) (4-133)

where hϕ(t) carries the information on the squeezing phase and is defined as

hϕ(t) = cos(2(ϕ− Ωat)) + cos(Ωbt)(cos(2ϕ) cos(Ωbt)

−2 cos(2ϕ− Ωat)) + 2κ sin(Ωbt)(sin(2ϕ) cos(Ωbt)

− sin(2ϕ− Ωat)) − κ2 cos(2ϕ) sin2(Ωbt). (4-134)

Figure 4.3 shows the individual stationary (a) and non-stationary (b) contribu-
tions and the total (c) position rms for a semiclassical particle in a thermal
state with occupation number n̄b = 10 in contact with a squeezed quantum
particle with squeezing parameter r = 3 (≈ 30 dB) [126], for ϕ = 0, and for
different angles in the supplemental material. The effect of different angles
can be calculated from Eq. (4-134) and Eq. (4-133). The individual stationary
and non-stationary contributions can become negative, but observe the total
position rms remains positive due to the thermal bath contribution. Moreover,
the total position rms σqb

depends strongly on the squeezing phase, as can be
seen from the traces in Figure 4.3(c); see Supplementary video for a complete
sweep of the squeezing phase from ϕ = 0 to ϕ = 2π.
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Figure 4.3: Effect of a squeezed quantum particle with r = 3
(≈ 30 dB) in contact with a semiclassical particle in an initially
thermal state with occupation number n̄b = 10: (a) stationary
contribution, (b) non-stationary contribution for a squeezing
phase ϕ = 0 (solid blue curve), (c) total position rms for
ϕ = 0 (solid blue curve) compared to the initial uncertainty
σ0 =

√
2n̄b + 1 × q0,b ≈ 4.6 × q0,b (red dashed line).

Figure 4.4 shows the maximum value of σqb
as a function of squeezing

and the Coulomb coupling strength, changed by varying the particles’ charge.
Squeezing is measured in decibels (dB) by S = 10 log(2Var(qb)), with Var(qb) =
e2r/2. We see that for a quantum particle with 30 dB squeezing [126] and
moderate values of the coupling strength, ge/Ωb ≈ 0.2, significant enhancement
of the position rms can be achieved when compared to the initial semiclassical
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Figure 4.4: Dependence of the maximum value of the position
rms σqb

with the interaction coupling strength ge/Ωb and
quantum particle squeezing S (dB). The position rms is given
in units of zero point fluctuations q0,b, and should be compared
to the initial semiclassical uncertainty of σ0 ≈ 4.6 × q0,b. The
coupling strength is changed by varying the electric charge of
the particles from 100 to 260 elementary charges.

rms value σ0 ≈ 4.6×q0,b. In terms of thermal occupation number, this represents
an increase from an initial value of n̄b = 10 to n̄′

b = 220, while for more modest 10
dB of squeezing, the increase of the occupation number will be from n̄b = 10 to
n̄′
b = 71. A possible way of measuring this effect of quantum-induced noise would

be to employ a generalization of the Kalman filter as used in [44] to achieve zero
point fluctuation-level position uncertainty in the presence of colored noise [127].
For comparison, Figure 4.5 displays the maximum position rms σqb

compared
to σ0 as a function of the number of phonons of the semiclassical oscillator
and squeezing of the quantum particle, at a fixed optomechanical coupling
of ge/Ωb = 0.2; as expected, the higher the number of phonons (the initial
temperature of the semiclassical particle), the harder it becomes to observe
the rms oscillations, unless more squeezing is added to the quantum oscillator.
For a single mode squeezed thermal state the excess position rms acquires an
additional enhancement factor,

(∆σst
qb

)2
th = coth

(
βaΩaℏ

2

)
(∆σst

qb
)2, (4-135)

which becomes significant when β−1
a ≫ ℏΩa/2. Considering a levitated

nanoparticle cooled to a number of phonons of nb = 0.5 (Ta = 45 mK,
βa = 1.6 × 1027 J/K) [44] we have coth (βaℏΩa/2) ∼ 2.12, further enhancing
the fluctuations in the semiclassical particle.
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Figure 4.5: Dependence of the maximum value of the position
rms σqb

(in units of zero point fluctuations q0,b) with the
initial number of phonons nb in the semiclassical oscillator
versus quantum particle squeezing S (dB), compared to the
initial semiclassical uncertainty of σ0 ≈ 4.6×q0,b. The coupling
strength is assumed to be ge/Ωb = 0.2.

4.3.2
Gravitational field of a delocalized particle

A this point, we cannot resist exploiting the analogy between the
Coulomb and Newtonian potentials to draw some comments on the stochastic
gravitational field of a delocalized quantum particle.

We consider two identical particles of mass m at a center-of-mass
separation d. To leading order in the particles’ displacements, the Newtonian
gravitational potential yields an interaction Hamiltonian of the form [128]
HN ≈ (Gm2/d3)(qa − qb)2, which translates into an effective frequency shift of

Ωa,b ≈
√
ω2
a,b + 2Gm/d3 (4-136)

and a Newtonian coupling rate

gN ≈ −2G
ℏ
m2q0,aq0,b

d3 (4-137)

According to Eqs. (4-56) and (4-57), for large squeezing parameters, we can
recast both the stationary and non-stationary stochastic forces according to

fQ(t) ≈ er
ℏgN
q0,b

ξ(t) = ℏΓent

q0,b
ξ(t) (4-138)

where ξ(t) satisfies either the stationary or non-stationary correlators in Eqs.
(4-58) and (4-59) and we define the entanglement rate

Γent ≡ 2
(
G

ℏ

)(
m2∆qa∆qb

d3

)
(4-139)

where ∆qa = erq0,a and ∆qb = q0,b are the wavefunction uncertainties in the
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position basis for a squeezed particle and a particle in the ground state.
To arrive at the stochastic force, we have considered a stationary phase

approximation in the stochastic propagator in Eq. (4-40). If we do not make
the semiclassical approximation, we can see that the gravitational interaction
generates entanglement between the oscillators [128–131] at a rate given by
Γent – indeed Eq. (4-139) is the short-time approximation of the entanglement
rate between two continuously delocalized oscillators interacting via gravity
as derived in [131]. Arguably, the rate Γent is extremely small given current
experiments, but the result (4-138) is conceptually interesting as it makes the
connection between entanglement and the quantum-induced stochastic force
of a subsystem manifest. Naturally, the same conclusions apply to the much
stronger case of Coulomb interactions.

4.4
Discussion

In this chapter, we have applied the formalism of double path integrals
and Feynman-Vernon influence functionals to linear optomechanical systems.
We have analysed the effective stochastic dynamics induced by the interactions
between a semiclassical and a quantum system in different states, notably the
ground state, squeezed-coherent and squeezed-thermal states. Colored noise
and dissipation with memory arising from quantum fluctuations are ubiquitous
in linear optomechanical quantum-classical interactions. Microscopically, these
fluctuations can be understood as a ‘semiclassical’ manifestation of the
entanglement generated by the interaction between the two subsystems. We have
studied these effects in the context of levitated nanoparticles, both in cavity and
free space multi-particle scenarios. Notably, the quantum-classical stochastic
dynamics induced by the Coulomb interaction between two levitated particles
is potentially measurable in near future experiments with delocalized quantum
states, where squeezing of the mechanical wavefunction yields an exponential
enhancement of the quantum-induced stochastic forces. The analogy between
the Coulomb and Newtonian potentials has been used to comment on the
connection between the effective stochastic dynamics and gravitational-induced
entanglement.

Throughout our study, we find strong similarities between a linear
optomechanical system and the effective field theory of a quantized gravitational
wave mode interacting with a GW detector, despite both systems being governed
by seemingly different Hamiltonians, one originating from the Einstein-Hilbert
action [26] while the other from the interaction of dielectrics in electromagnetic
fields [57, 132]. This reinforces the analogies between optomechanics and
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the quantum theory of GWs [133] and opens the possibility of investigating
novel ways of probing the quantum nature of GWs through proof-of-principle
laboratory experiments.

Our findings also open the way to novel investigations at the interface
between stochastic thermodynamics and fundamental tests of quantum theory.
For instance, the formalism of path integrals allows for the calculation of the
work distribution [108] and probability of rare violations of the second law
of thermodynamics [107] springing from state dependent quantum-induced
fluctuations in levitated optomechanical systems. Moreover, the formalism
can be extended to investigate the effective stochastic dynamics induced by
multipartite entangled quantum states in contact with a classical probe. In
principle, such investigation could lead to new forms of witnessing entanglement
and non-classicality in the mesoscopic scale.



5
Outlook

In this work, we have investigated how the quantum features of harmonic
oscillators of macroscopic nature affects the dynamics of a system of interest.
After developing the basics of the formalism needed throughout the text, we
apply it in two different contexts. The first, was to analyze the dynamics of a
gravitational wave interacting with a detector, via the dispersive optomechanical
interaction. Assuming that intrinsically quantum states of GW could be
generated in astrophysical events, due to the nonlinearity of Einstein’s field
equations, we estimated its effect and how it would induce a change in the
observable signal. We also worked in a full optomechanical frame, discussing
how different quantum states of the unobserved subsystems (the light field or a
different nanoparticle) would affect the dynamics of the observable particle. We
employed the Feynman-Vernon formalism and achieved the Langevin equations
for the nanoparticle dynamics. Furthermore, the theoretical approach discussed
in this work could be deepened and extended for other scopes. We briefly
discuss some possibilities.

Theoretical Prospects in Levitated Optomechanics

Following what was discussed in this work, we aim at showing intrinsic
quantum behavior in levitated optomechanical systems. To this end, the usual
approach in the literature is to put the particle in its ground state of the
center of mass motion, and then be able to expand its wave function, such as
in [134,135]. After that, when the uncertainty of the position is of the order
of the size of the nanoparticle, one would make a double slit-like experiment,
expliciting the quantum nature of the particle by observing the interference
fringes that would show up.

One of the main obstacles in this program is due to the decoherence
caused by laser, called recoil heating [136]. This is a fundamental source of
noise, arising from the fact that in order to measure the system, one needs to
interact with it, so that the unobserved scattered photons carry the information
away. At the same time, we need a high detection efficiency to perform the
feedback cooling needed to bringing it to the ground state. So we need a way
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to maximize the information that we extract from the particle, while minimally
disturbs it. One of the ways that we believe we could achieve that, is by the
use of structured light [137].

It was shown that when measuring the particle with a gaussian beam,
mostly of the information regarding the particle’s position is contained in the
light that is scattered backwards by the particle [138]. Motivated by recent
advances in using structured light to tweeze particles [139], one could use
different light modes to manipulate the information patterns scattered by
the particle, increasing it in one direction or another, for example. Moreover,
understanding the behavior of the information patterns for an arbitrary beams
opens the possibility to other features, such as beams that don’t extract any
information from the particle, minimizing the recoil heating, for instance.

Another interesting possibility is to slightly change the paradigm. The
previous approach relied in a extreme capacity of isolating, controlling and
measuring the system. Yet achievable, this yields a fragile quantum coherence,
susceptible to many decoherence mechanisms, given the complexity of the
setups and the time needed to perform the double slit-like experiment. Here,
we propose investigating the quantum nature of these systems via the scope of
quantum thermodynamics and quantum information [140].

Since the nanoparticle is in a intermediate regime, with many degrees of
freedom, but also close to its motional ground state, quantum thermodynamical
effects may play a important role in the dynamics. Moreover, the formalism
of quantum information is the best suited for treating features such as
entanglement and decoherence. In this way, this seems a good path to
understand intrinsic quantum behavior such as in [141–143].

Moreover, in the quantum information/thermodynamical approach, one
could maybe find some fundamental inequality that assures nonclassicality of a
system via, for instance, correlations in the position. These kind of inequality
would be analogous to a Bell-like inequality, and, in principle, could be more
resilient to decoherence. Of course that even though one expects to relax the
experimental constraints, the feasibility of this kind of experiment is still very
reliable in sophisticated experimental techniques.

Quantization of Nonlinear Gravitational Waves

This is by far the boldest assumption of the outlook. In chapter 3 we
assumed no knowledge of the source of the GW’s, and argued that intrinsic
quantum states could be, in principle, generated due to nonlinearities of the
Einstein’s equations. Given recent works outlining the importance of nonlinear
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effects on the detection of gravitational waves coming from the ringdown of
black holes [144], these arguments are reinforced.

Nonetheless, to quantize a theory of nonlinear gravitational waves is not
simple. Due to issues regarding gauge invariance and ghosts [145], we cannot
simply add higher order terms in the action 2-126. We need to look for second
order propagating gauge invariant perturbations.

This could perhaps be better described in the formalism of Newman-
Penrose [146], and seminal works regarding gauge invariant perturbations of
spacetime use this formalism [147]. Perturbations of second order that are
gauge invariant were also proposed [148].

In this way, we believe that combining perks of the Newman-Penrose
formalism and QFT in curved space times, one could, in principle find a
(gauge, coordinate invariant) quantized theory of GWs that explicitly exhibits
nonlinearities. Moreover, if we achieve that, we can look for intrinsic nonlinear
quantum phenomena in gravitational waves, that are usual in quantum optics
[149] and its effects on observational data, in analogy to the optomechanical
program of detecting the quantum nature of mesoscopic oscillators.
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A
Fluctuation and Dissipation in a cavity

Summation over modes in a cavity leads us to the fluctuation and
dissipation integrals in Eqs. (4-79) and (4-80). Taking into account the density
of modes in Eq. (4-76) results in the two main integrals,

I1 =
∫ ∞

0
dω
ω4 cos(ω(t− t′))
(ω − ωc)2 + γ2 (A-1)

I2 =
∫ ∞

0
dω
ω4 sin(ω(t− t′))
(ω − ωc)2 + γ2 (A-2)

for the fluctuation and dissipation terms, respectively. These can be rewritten
as

I1 = d4

dτ ′4J1, (A-3)

I2 = d4

dτ ′4J2. (A-4)

where,

J1 =
∫ ∞

0
dω

cos(ωτ ′)
(ω − ωc)2 + γ2 (A-5)

J2 =
∫ ∞

0
dω

sin(ωτ ′)
(ω − ωc)2 + γ2 (A-6)

and τ ′ = t− t′. Both I1 and I2 can be evaluated in terms of distributions. We
now proceed to calculate each integral, starting with J1,2 and then I1,2.

A.1
Evaluation of J1,2

Eq. (A-4) can be written in terms of a Fourier transform,∫ ∞

0
dω

sinωτ
(ω − ωc)2 + γ2

= Im
∫ ∞

−∞
dω

H(ω)eiωτ

(ω − ωc)2 + γ2
, (A-7)

We can use the convolution theorem to solve (A-7). We use the following
convention for the convolution of two functions,

1
2π (f ∗ g)(τ) = 1

2π

∫ ∞

−∞
dαf(α)g(τ − α). (A-8)



Appendix A. Fluctuation and Dissipation in a cavity 106

For the Heaviside, we have the Fourier transform,

f(τ) =
∫ ∞

−∞
dωH(ω)eiωτ = πδ(τ) + P

(
i

τ

)
, (A-9)

where P denotes the Cauchy principal value. Using [18],

P
(1
τ

)
= 1
τ + iϵ

+ πiδ(τ), (A-10)

we have
f(τ) =

∫ ∞

−∞
dωH(ω)eiωτ = i

τ + iϵ
. (A-11)

For the Lorentzian the Fourier transform reads,

g(τ) =
∫ ∞

−∞
dω

eiωτ

(ω − ωc)2 + γ2
= π

γ
eiωcτe−γ|τ |. (A-12)

Using the convolution theorem,
1

2π (f ∗ g)(τ) = i

2γ

∫ ∞

−∞
dα

1
τ − α + iϵ

eiωcαe−γ|α|. (A-13)

We can again use the convolution theorem to solve (A-13). We have,∫ ∞

−∞
dβeiωcβe−γ|β| = 2γ

γ2 + ω2
c

, (A-14)

∫ ∞

−∞
dβ

1
τ − β ± iϵ

eiωcβ = −2πieiωcτ , (A-15)

where ωc > 0. The convolution of Eq. (A-14) and (A-15) reads,∫ ∞

−∞
dβ

eiωcβe−γ|β|

τ − β ± iϵ
= −2iγeiωcτ

∫ ∞

−∞
dα

e−iτα

γ2 + α2 . (A-16)

Finally, using ∫ ∞

−∞
dα

e−iτα

γ2 + α2 = πe−γ|τ |

γ
, (A-17)

we find,
i

2γ

∫ ∞

−∞
dα

eiωcαe−γ|α|

τ − α± iϵ
= π

γ
eiωcτe−γ|τ |. (A-18)

Putting it all together and taking the imaginary part of the result we arrive at∫ ∞

0
dω

sinωτ
(ω − ωc)2 + γ2

= π

γ
e−γ|τ | sin (ωcτ) . (A-19)

The integral J1 can be written as a Fourier transform,

J1 = 1
2Re

∫ ∞

−∞
dω

eiωτ

(ω − ωc)2 + γ2
(A-20)

Again using (A-12) we have,

J1 = π

2γ e
−γ|τ | cosωcτ. (A-21)
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A.2
Distributional derivatives

We now need to take derivatives of J1,2. Note these are discontinuous and
exist only in the sense of distributions [150]. Define the action of a distribution
T on a test function ϕ as the inner product

⟨T, ϕ⟩ =
∫ ∞

−∞
dxT (x)ϕ(x) (A-22)

and the derivative of a distribution as

⟨T ′, ϕ⟩ = −⟨T, ϕ′⟩ (A-23)

To evaluate the derivatives of J1,2 we note that discontinuities spring from the
the e−γ|τ | terms, for which the first derivative is

d

dτ
e−γ|τ | = −γ sign(τ)e−γ|τ |. (A-24)

We can evaluate higher derivatives by considering their effects on a test function
ϕ(τ). We have,

〈
d

dτ

(
−γ sign(τ)e−γ|τ |

)
, ϕ(τ)

〉
= −

〈(
−γ sign(τ)e−γ|τ |

)
, ϕ′(τ)

〉
= γ

∫ ∞

0
e−γτϕ′(τ)dτ − γ

∫ 0

−∞
eγτϕ′(τ)dτ

= −2γϕ(0) − γ
∫ ∞

−∞

d

dτ

(
e−γ|τ |

)
ϕ(τ)dτ

= −2γ⟨δ(τ), ϕ(τ)⟩ + γ2⟨e−γ|τ |, ϕ(τ)⟩. (A-25)

We conclude,
d2

dτ 2

(
e−γ|τ |

)
= −2γδ(τ) + γ2e−γ|τ |. (A-26)

Generalizing to higher orders we find,

d3

dτ 3

(
e−γ|τ |

)
= −2γδ′(τ) − γ3sign(τ)e−γ|τ |, (A-27)

d4

dτ 4

(
e−γ|τ |

)
= −2γδ′′(τ) − 2γ3δ(τ) + γ4e−γ|τ |. (A-28)

Through repeated applications of the above derivative rules we can
compute Eqs. (A-3) and (A-4). We have,

d4

dτ 4

(
e−γ|τ | sin(ωcτ)

)
= ω4

c

[
−2(ν3 − 6ν)δ(τ)

ωc
sin(ωcτ) − 8ν δ

′(τ)
ω2
c

cos(ωcτ) − 2ν δ
′′(τ)
ω3
c

sin(ωcτ)

+e−γ|τ ′|
(
(1 − 6ν2 + ν4) sin(ωcτ) + 4(ν − ν3)sgn(τ) cos(ωcτ)

)]
(A-29)
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d4

dτ 4

(
e−γ|τ ′| cos(ωcτ ′)

)
= ω4

c

[
−2(ν3 − 6ν)δ(τ)

ωc
cos(ωcτ) − 8ν δ

′(τ)
ω2
c

sin(ωcτ) − 2ν δ
′′(τ)
ω3
c

cos(ωcτ)

+e−γ|τ |
(
(1 − 6ν2 + ν4) cos(ωcτ) − 4(ν − ν3)sgn(τ) sin(ωc|τ |)

)]
(A-30)

where as in the main text we define ν = γ/ωc. We can further simplify this
result by introducing certain distribution identities.

A.3
Distribution identities

Consider the action of the δ′′(τ) cos(ωcτ) distribution on a test function,

⟨δ′′(τ) cos(ωcτ), ϕ(τ)⟩ = ⟨δ′′(τ), cos(ωcτ)ϕ(τ)⟩ = ⟨δ(τ), (cos(ωcτ)ϕ′′(τ))⟩

= ⟨δ(τ), (−2ωc sin(τωc)ϕ′(τ) + cos(τωc)ϕ′′(τ)+ −ω2
cϕ(τ) cos(τωc)

)
⟩

= ϕ′′(0) − ω2
cϕ(0) = ⟨δ(τ ′′) − ω2

cδ(τ), ϕ(τ)⟩ (A-31)

Therefore,
δ′′(τ) cos(ωcτ) = δ′′(τ) − ω2

cδ(τ). (A-32)
Following similar steps, we also have the following identities, used throughout
the main text,

δ(τ) cos(ωcτ) = δ(τ), (A-33)

δ′(τ) sin(ωcτ) = −ωcδ(τ), (A-34)

δ′(τ) cos(ωcτ) = −δ′(τ), (A-35)

δ′′(τ) sin(ωcτ) = 2ωcδ′(τ). (A-36)



B
Semiclassical Light as probe of quantum particle

In this appendix we will analyze the results when we trace off a particle in
a quantum state, looking at the resulting semiclassical equations of the cavity
field. Since the formalism and the conclusions are much alike the ones in 4.2, we
chose to leave this part in the appendix. With the appropriate modifications,
we can use the methods developed so far to describe a semiclassical optical
field interacting with a quantum mechanical oscillator.

B.1
Optical equations of motion

The derivation of the optical semiclassical equations of motion is very
analogous to that of the mechanical case and with the proper substitution of
constants we can fast-forward to the optical version of the results in Sec. 4.1.5.

For simplicity, we will consider a single cavity mode. The Hamiltonian
describing our system is the same as in Eq. (4-1). Up to a constant shift, the
free optical Hamiltonian in Eq. (4-2) can be written as

Hc/ℏ = ω

4
(
X(t)2 + Y (t)2

)
(B-1)

where the optical field quadratures are defined as

X(t) = ae−iωt + a†eiωt (B-2)

Y (t) = i
(
a†eiωt − ae−iωt

)
(B-3)

and Ẋ = ωY . We define the electromagnetic position and momentum
quadratures

Q ≡
√

ℏ
2m0ω

X , P = m0Q̇ (B-4)

where m0 is a constant with dimension of mass introduced to establish the
analogy between an optical mode and a harmonic oscillator [151]. In terms of
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Q,P the Hamiltonian (B-1) becomes

Hc = 1
2

(
m0ω

2Q2 + P 2

m0

)
(B-5)

with the corresponding Lagrangian,

Lc = m0

2
(
Q̇2 − ω2Q2

)
= ℏ

4ω
(
Ẋ2 − ω2X2

)
(B-6)

Note that m0 drops out of Lc.
Repeating the steps up to Sec. 4.1.5 we obtain the electromagnetic version

of the stochastic propagator in Eq. (4-40) after tracing out the mechanical
degree of freedom. For the mechanical oscillator initially in the ground state
we have

J (Xt, X
′
t|X0, X

′
0) =

∫ Xt,X′
t

X0,X′
0

DXDX ′
∫

Dζ P [ζ(t)] exp
(
i

ℏ

∫ tf

0
dt (Lc − L′

c)
)

× exp
(
i

ℏ

∫ tf

0
dtℏζ(t)(X(t) −X ′(t))

+ i

ℏ
(
ℏg2

) ∫ tf

0

∫ t

0
dt dt′ (X(t) −X ′(t)) (X(t′) +X ′(t′)) sin (ωm(t− t′))

)
(B-7)

where the probability density P [ζ(t)] is defined in (4-76) and L′
c is the

Lagrangian in Eq. (B-6) in terms of the backward quadrature X → X ′. Note
that we can express ζ(t) in terms of the dimensionless random variable ξ(t) by
using Eq. (4-39).

From (B-7) we can calculate the semiclassical Eqs. of motion for the cavity
field quadrature. As in the mechanical case we neglect the coupling between
the forward and backward variables X and X ′. We have,

Ẍ + γẊ + ω2X = FQ(t) + Fdiss(t) (B-8)

where FQ(t) is the stochastic “force” arising from the quantum fluctuations of
the mechanical oscillator,

FQ(t) = 2ωgξ(t) (B-9)
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with

⟨ξ(t)ξ(t′)⟩ = cos(ωmτ) (B-10)

and Fdiss(t) is the dissipation term given by

Fdiss(t) = 2ωg2
∫ t

0
dt′X(t′) sin(ωm(t− t′)). (B-11)

Note that we have introduced a phenomenological dissipative term γẊ due to
the coupling of the cavity mode with the external electromagnetic field [62].
This comes from the input-output formalism, discussed in sec.2.3.

To compare the order-of-magnitude of the terms in Eq. (B-8) we rescale
time according to t → ωmt. The equation of motion becomes,

Ẍ +
(
γ

ωm

)
Ẋ +

(
ω

ωm

)2
X = 2ε

(
ω

ωm

)
ξ(t) + 2ε2

(
ω

ωm

) ∫ t

0
dt′X(t′) sin(t− t′)

(B-12)

where here derivatives and integration are taken with respect to rescaled time.
Again we see the fluctuation is of order ε while the dissipation arising from the
influence functional is of order ε2, which from now on will be neglected.

In the mechanical case we have summed over the cavity modes weighted
by the Lorentzian density of states of width γ. Similarly, the mechanical mode
also couples to external environmental degrees of freedom and a sum over
modes procedure is in order. However, the broadening of the mechanical mode
given by the mechanical damping rate γm is comparatively much smaller than
that of the cavity. We have γm/ωm ≈ 10−11 ≪ ν. We will therefore consider
the mechanical oscillator as a single mode system. This approximation is valid
for times much smaller than the inverse mechanical damping rate, t ≪ γ−1

m .
We arrive at the final form of the semiclassical optical equations for the

field quadratures,

Ẋ = ωY (B-13)

Ẏ ≈ −ωX − γY + 2gξ(t) (B-14)

where ξ(t) satisfies (B-10).

B.2
Fluctuations

Let us estimate the order of magnitude of the fluctuations imprinted
on the cavity by a quantum mechanical oscillator in the ground state. For
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simplicity we neglect the cavity dissipation. In that case the optical equations
are formally solved by

X(t) = X0 cos(ωt) + Y0 sin(ωt)

+2g
∫ t

0
ds sin(ω(t− s))ξ(s), (B-15)

Y (t) = −X0 sin(ωt) + Y0 cos(ωt)

+2g
∫ t

0
ds cos(ω(t− s))ξ(s). (B-16)

where the field quadratures have initial conditions X(0) = X0, Y (0) = Y0. The
field quadrature rms reads

σ2
X = σ2

0 + ∆σ2
X (B-17)

where

σ2
0 = σ2

X0 cos2(ωt) + σ2
Y0 sin2(ωt)

+2Cov(X0, Y0) sin(ωt) cos(ωt) (B-18)

and the excess quantum-induced fluctuations are

∆σ2
X = 4g2

∫ t

0

∫ t

0
dsds′ sin(ω(t− s))

sin(ω(t− s′))⟨ξ(s)ξ(s′)⟩ (B-19)

Note that with the appropriate changes of constants ∆σ2
X assumes the same

form as Eq. (4-106) with zero damping rate γm = 0.

B.3
Quantitative Estimations

Since we are interested in the changes in the quadrature rms due to
interaction with the mechanical oscillator we need only look into ∆σ2

X . We
have,

∆σ2
X = 4g2ω2

(ω2 − ω2
m)2h(t) (B-20)

where

h(t) = 1 + cos2(ωt) − 2 cos(ωt) cos(ωmt)

−2κ sin(ωt) sin(ωmt) + κ2 sin2(ωmt) (B-21)
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and κ = ωm/ω. Similar expressions for σ2
Y can be obtained. We see

that to leading order in (ωm/ω), the optical quadrature rms oscillates with a
characteristic amplitude given by ∆σ2

X ≈ (g/ω)2, which for the optomechanical
parameters in Table 4.1 is g/ω ≈ 10−10. This number is to be compared
with the standard deviation of the optical coherent state σX0 = 1/2. Again,
ground state fluctuations are too small to have any practical effects in levitated
optomechanics.

For the case of squeezed states, the result in Eq. (B-20) will acquire
an exponential enhancement and a non-stationary contribution dependent
on the squeezing phase as in the mechanical case. However, to elevate the
amplitude of the oscillations in (B-20) to a level comparable to the standard
deviation of a coherent state will require a 23 e-fold enhancement factor,
corresponding to an impractical amount of squeezing. It is interesting to observe
that a room-temperature levitated nanoparticle yields an appreciable effect,
∆σX ∝ (kBTbath/ℏωm)(g/ω) ≈ 10−3 for Tbath ≈ 293 K.

As a final observation, note that the rms in Eq. (B-20) has a factor
inversely proportional to the square difference of the oscillators’ frequencies. For
a cavity interacting with a mechanical oscillator the higher optical frequency
dominates, leading to a suppression of ∆σX . If two oscillators with similar
frequencies interact via the linear optomechanical Hamiltonian we can expect a
resonantly enhanced effect. This motivates our final application of two linearly
coupled levitated nanoparticles.
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